Author: Nahand, Javid Sadri; Jamshidi, Sogol; Hamblin, Michael R.; Mahjoubin-Tehran, Maryam; Vosough, Massoud; Jamali, Marzieh; Khatami, Alireza; Moghoofei, Mohsen; Baghi, Hossein Bannazadeh; Mirzaei, Hamed
Title: Circular RNAs: New Epigenetic Signatures in Viral Infections Cord-id: 7bp2lss3 Document date: 2020_7_31
ID: 7bp2lss3
Snippet: Covalent closed circular RNAs (circRNAs) can act as a bridge between non-coding RNAs and coding messenger RNAs. CircRNAs are generated by a back-splicing mechanism during post-transcriptional processing and are abundantly expressed in eukaryotic cells. CircRNAs can act via the modulation of RNA transcription and protein production, and by the sponging of microRNAs (miRNAs). CircRNAs are now thought to be involved in many different biological and pathological processes. Some studies have suggeste
Document: Covalent closed circular RNAs (circRNAs) can act as a bridge between non-coding RNAs and coding messenger RNAs. CircRNAs are generated by a back-splicing mechanism during post-transcriptional processing and are abundantly expressed in eukaryotic cells. CircRNAs can act via the modulation of RNA transcription and protein production, and by the sponging of microRNAs (miRNAs). CircRNAs are now thought to be involved in many different biological and pathological processes. Some studies have suggested that the expression of host circRNAs is dysregulated in several types of virus-infected cells, compared to control cells. It is highly likely that viruses can use these molecules for their own purposes. In addition, some viral genes are able to produce viral circRNAs (VcircRNA) by a back-splicing mechanism. However, the viral genes that encode VcircRNAs, and their functions, are poorly studied. In this review, we highlight some new findings about the interaction of host circRNAs and viral infection. Moreover, the potential of VcircRNAs derived from the virus itself, to act as biomarkers and therapeutic targets is summarized.
Search related documents:
Co phrase search for related documents- aberrant expression and liver disease: 1, 2, 3
- aberrant expression and long noncoding rna: 1
- accurate comparison and acute infection: 1
- accurate comparison and low frequency: 1
- action site and liver infection: 1
- action site and loop structure: 1
- acute infection and adaptive response: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40
- acute infection and liver disease: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
- acute infection and liver disease contribute: 1, 2
- acute infection and liver infection: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74
- acute infection and long noncoding rna: 1
- acute infection and loop structure: 1
- acute infection and low frequency: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
- adaptive response and liver disease: 1
- adaptive response and liver infection: 1
- liver disease and lncrna long noncoding rna: 1
- liver disease and long noncoding rna: 1
Co phrase search for related documents, hyperlinks ordered by date