Author: Miles, Melissa; Rodrigues, Antenor; Tajali, Shirin; Xiong, Yijun; Orchanian-Cheff, Ani; Reid, W Darlene; Rozenberg, Dmitry
Title: Muscle and cerebral oxygenation during cycling in chronic obstructive pulmonary disease: A scoping review. Cord-id: ls1bcpe7 Document date: 2021_1_1
ID: ls1bcpe7
Snippet: To synthesize evidence for prefrontal cortex (PFC), quadriceps, and respiratory muscle oxygenation using near-infrared spectroscopy (NIRS) during cycling in individuals with chronic obstructive pulmonary disease (COPD). A scoping review was performed searching databases (inception-August 2020): Ovid MEDLINE, EMBASE, Cochrane Systematic Reviews, Cochrane Central Register of Controlled Clinical Trials, CINAHL, SPORTDiscus and Pedro. The search focused on COPD, cycling, and NIRS outcomes. 29 studie
Document: To synthesize evidence for prefrontal cortex (PFC), quadriceps, and respiratory muscle oxygenation using near-infrared spectroscopy (NIRS) during cycling in individuals with chronic obstructive pulmonary disease (COPD). A scoping review was performed searching databases (inception-August 2020): Ovid MEDLINE, EMBASE, Cochrane Systematic Reviews, Cochrane Central Register of Controlled Clinical Trials, CINAHL, SPORTDiscus and Pedro. The search focused on COPD, cycling, and NIRS outcomes. 29 studies (541 COPD participants) were included. Compared to healthy individuals (8 studies), COPD patients at lower cycling workloads had more rapid increases in vastus lateralis (VL) deoxygenated hemoglobin (HHb); lower increases in VL total hemoglobin (tHb) and blood flow; and lower muscle tissue saturation (StO2). Heliox and bronchodilators were associated with smaller and slower increases in VL HHb. Heliox increased VL and intercostal blood flow compared to room air and supplemental oxygen in COPD patients (1 study). PFC oxygenated hemoglobin (O2Hb) increased in COPD individuals during cycling in 5 of 8 studies. Individuals with COPD and heart failure demonstrated worse VL and PFC NIRS outcomes compared to patients with only COPD-higher or more rapid increase in VL HHb and no change or decrease in PFC O2Hb. Individuals with COPD present with a mismatch between muscle oxygen delivery and utilization, characterized by more rapid increase in VL HHb, lower muscle O2Hb and lower muscle StO2. PFC O2Hb increases or tends to increase in individuals with COPD during exercise, but this relationship warrants further investigation. NIRS can be used to identify key deoxygenation thresholds during exercise to inform PFC and muscle oxygenation.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date