Author: López-Cortés, Andrés; Guevara-RamÃrez, Patricia; Kyriakidis, Nikolaos C.; Barba-Ostria, Carlos; León Cáceres, Ãngela; Guerrero, Santiago; Ortiz-Prado, Esteban; Munteanu, Cristian R.; Tejera, Eduardo; Cevallos-Robalino, Doménica; Gómez-Jaramillo, Ana MarÃa; Simbaña-Rivera, Katherine; Granizo-MartÃnez, Adriana; Pérez-M, Gabriela; Moreno, Silvana; GarcÃa-Cárdenas, Jennyfer M.; Zambrano, Ana Karina; Pérez-Castillo, Yunierkis; Cabrera-Andrade, Alejandro; Puig San Andrés, Lourdes; Proaño-Castro, Carolina; Bautista, Jhommara; Quevedo, Andreina; Varela, Nelson; Quiñones, Luis Abel; Paz-y-Miño, César
Title: In silico Analyses of Immune System Protein Interactome Network, Single-Cell RNA Sequencing of Human Tissues, and Artificial Neural Networks Reveal Potential Therapeutic Targets for Drug Repurposing Against COVID-19 Cord-id: m2bmp8s8 Document date: 2021_2_26
ID: m2bmp8s8
Snippet: Background: There is pressing urgency to identify therapeutic targets and drugs that allow treating COVID-19 patients effectively. Methods: We performed in silico analyses of immune system protein interactome network, single-cell RNA sequencing of human tissues, and artificial neural networks to reveal potential therapeutic targets for drug repurposing against COVID-19. Results: We screened 1,584 high-confidence immune system proteins in ACE2 and TMPRSS2 co-expressing cells, finding 25 potential
Document: Background: There is pressing urgency to identify therapeutic targets and drugs that allow treating COVID-19 patients effectively. Methods: We performed in silico analyses of immune system protein interactome network, single-cell RNA sequencing of human tissues, and artificial neural networks to reveal potential therapeutic targets for drug repurposing against COVID-19. Results: We screened 1,584 high-confidence immune system proteins in ACE2 and TMPRSS2 co-expressing cells, finding 25 potential therapeutic targets significantly overexpressed in nasal goblet secretory cells, lung type II pneumocytes, and ileal absorptive enterocytes of patients with several immunopathologies. Then, we performed fully connected deep neural networks to find the best multitask classification model to predict the activity of 10,672 drugs, obtaining several approved drugs, compounds under investigation, and experimental compounds with the highest area under the receiver operating characteristics. Conclusion: After being effectively analyzed in clinical trials, these drugs can be considered for treatment of severe COVID-19 patients. Scripts can be downloaded at https://github.com/muntisa/immuno-drug-repurposing-COVID-19.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date