Author: Elfiky, Abdo A.; Azzam, Eman B.
Title: Novel guanosine derivatives against MERS CoV polymerase: An in silico perspective Cord-id: 4othgjne Document date: 2020_4_27
ID: 4othgjne
Snippet: The Middle East Respiratory Syndrome Coronavirus (MERS CoV), also termed camel flu, is a new viral infection that first reported in the year 2012 in the Middle East region and further spread during the last seven years. MERS CoV is characterized by its high mortality rate among different human coronaviruses. MERS CoV polymerase shares more than 20% sequence identity with the Hepatitis C Virus (HCV) Non-structural 5b (NS5b) RNA dependent RNA polymerase (RdRp). Despite the low sequence identity, t
Document: The Middle East Respiratory Syndrome Coronavirus (MERS CoV), also termed camel flu, is a new viral infection that first reported in the year 2012 in the Middle East region and further spread during the last seven years. MERS CoV is characterized by its high mortality rate among different human coronaviruses. MERS CoV polymerase shares more than 20% sequence identity with the Hepatitis C Virus (HCV) Non-structural 5b (NS5b) RNA dependent RNA polymerase (RdRp). Despite the low sequence identity, the active site is conserved between the two proteins, with two consecutive aspartates that are crucial in the nucleotide transfer reaction. In this study, seven nucleotide inhibitors have been tested against MERS CoV RdRp using molecular modeling and docking simulations, from which four are novel compounds. Molecular Dynamics Simulation for 260 nanoseconds is performed on the MERS CoV RdRp model to test the effect of protein dynamics on the binding affinities to the tested nucleotide inhibitors. Results support the hypothesis of using the anti-polymerases (Anti-HCV drugs) against MERS CoV RdRp as a potent candidates. Besides four novel compounds are suggested as a seed for high performance inhibitors against MERS CoV RdRp. Communicated by Ramaswamy H. Sarma
Search related documents:
Co phrase search for related documents- active site conformation and acute respiratory syndrome: 1, 2, 3, 4
- active site pocket and acute respiratory syndrome: 1, 2, 3
- active site residue and acute respiratory syndrome: 1, 2
- acute pneumonia and low mortality: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
- acute pneumonia and low mortality rate: 1, 2
- acute pneumonia and low respiratory: 1, 2, 3, 4, 5, 6, 7, 8
- acute respiratory syndrome and low mortality: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
- acute respiratory syndrome and low mortality rate: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome and low respiratory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
- acute respiratory syndrome and magenta surface: 1
Co phrase search for related documents, hyperlinks ordered by date