Author: Nilashi, Mehrbakhsh; Asadi, Shahla; Ali Abumalloh, Rabab; Samad, Sarminah; Ghabban, Fahad; Ahani, Ali
Title: Recommendation agents and information sharing through social media for coronavirus outbreak Cord-id: 9fzajijg Document date: 2021_3_9
ID: 9fzajijg
Snippet: The novel outbreak of coronavirus disease (COVID-19) was an unexpected event for tourism in the world as well as tourism in the Netherlands. In this situation, the travelers’ decision-making for tourism destinations was heavily affected by this global event. Social media usage has played an essential role in travelers’ decision-making and increased the awareness of travel-related risks from the COVID-19 outbreak. Online consumer media for the outbreak of COVID-19 has been a crucial source of
Document: The novel outbreak of coronavirus disease (COVID-19) was an unexpected event for tourism in the world as well as tourism in the Netherlands. In this situation, the travelers’ decision-making for tourism destinations was heavily affected by this global event. Social media usage has played an essential role in travelers’ decision-making and increased the awareness of travel-related risks from the COVID-19 outbreak. Online consumer media for the outbreak of COVID-19 has been a crucial source of information for travelers. In the current situation, tourists are using electronic word of mouth (eWOM) more and more for travel planning. Opinions provided by peer travelers for the outbreak of COVID-19 tend to reduce the possibility of poor decisions. Nevertheless, the increasing number of reviews per experience makes reading all feedback hard to make an informed decision. Accordingly, recommendation agents developed by machine learning techniques can be effective in the analysis of such social big data for the identification of useful patterns from the data, knowledge discovery, and real-time service recommendations. The current research aims to adopt a framework for the recommendation agents through topic modeling to uncover the most important dimensions of COVID-19 reviews in the Netherland forums in TripAdvisor. This study demonstrates how social networking websites and online reviews can be effective in unexpected events for travelers’ decision making. We conclude with the implications of our study for future research and practice.
Search related documents:
Co phrase search for related documents- accuracy evaluation and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
- accuracy evaluation and machine learning technique: 1
- accurate information and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18
Co phrase search for related documents, hyperlinks ordered by date