Author: Skalny, Anatoly V.; Rink, Lothar; Ajsuvakova, Olga P.; Aschner, Michael; Gritsenko, Viktor A.; Alekseenko, Svetlana I.; Svistunov, Andrey A.; Petrakis, Demetrios; Spandidos, Demetrios A.; Aaseth, Jan; Tsatsakis, Aristidis; Tinkov, Alexey A.
Title: Zinc and respiratory tract infections: Perspectives for COVID-19 (Review) Cord-id: b0qj7tck Document date: 2020_4_14
ID: b0qj7tck
Snippet: In view of the emerging COVID-19 pandemic caused by SARS-CoV-2 virus, the search for potential protective and therapeutic antiviral strategies is of particular and urgent interest. Zinc is known to modulate antiviral and antibacterial immunity and regulate inflammatory response. Despite the lack of clinical data, certain indications suggest that modulation of zinc status may be beneficial in COVID-19. In vitro experiments demonstrate that Zn(2+) possesses antiviral activity through inhibition of
Document: In view of the emerging COVID-19 pandemic caused by SARS-CoV-2 virus, the search for potential protective and therapeutic antiviral strategies is of particular and urgent interest. Zinc is known to modulate antiviral and antibacterial immunity and regulate inflammatory response. Despite the lack of clinical data, certain indications suggest that modulation of zinc status may be beneficial in COVID-19. In vitro experiments demonstrate that Zn(2+) possesses antiviral activity through inhibition of SARS-CoV RNA polymerase. This effect may underlie therapeutic efficiency of chloroquine known to act as zinc ionophore. Indirect evidence also indicates that Zn(2+) may decrease the activity of angiotensin-converting enzyme 2 (ACE2), known to be the receptor for SARS-CoV-2. Improved antiviral immunity by zinc may also occur through up-regulation of interferon α production and increasing its antiviral activity. Zinc possesses anti-inflammatory activity by inhibiting NF-κB signaling and modulation of regulatory T-cell functions that may limit the cytokine storm in COVID-19. Improved Zn status may also reduce the risk of bacterial co-infection by improving mucociliary clearance and barrier function of the respiratory epithelium, as well as direct antibacterial effects against S. pneumoniae. Zinc status is also tightly associated with risk factors for severe COVID-19 including ageing, immune deficiency, obesity, diabetes, and atherosclerosis, since these are known risk groups for zinc deficiency. Therefore, Zn may possess protective effect as preventive and adjuvant therapy of COVID-19 through reducing inflammation, improvement of mucociliary clearance, prevention of ventilator-induced lung injury, modulation of antiviral and antibacterial immunity. However, further clinical and experimental studies are required.
Search related documents:
Co phrase search for related documents- acute ards respiratory distress syndrome and adjuvant therapy: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
- acute ards respiratory distress syndrome and long term outcome: 1, 2, 3, 4, 5, 6, 7
- acute ards respiratory distress syndrome and low plasma: 1, 2
- acute ards respiratory distress syndrome and lps exposure: 1, 2
- acute ards respiratory distress syndrome and lps induce: 1, 2, 3, 4, 5, 6
- acute ards respiratory distress syndrome and lps response: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
- acute ards respiratory distress syndrome and lung bronchi: 1
- acute ards respiratory distress syndrome and lung epithelia: 1, 2, 3, 4, 5, 6
- acute ards respiratory distress syndrome and lung inflammation: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
- acute ards respiratory distress syndrome and lung inflammation reduce: 1, 2, 3, 4
- acute ards respiratory distress syndrome and lung injury: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75
- acute ards respiratory distress syndrome and lung injury mediate: 1
- acute ards respiratory distress syndrome and lung protection: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
- acute ards respiratory distress syndrome and lung tissue: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
- acute ards respiratory distress syndrome and lung tissue expression: 1, 2, 3, 4, 5, 6
- acute ards respiratory distress syndrome and lymphocyte leukocyte: 1, 2, 3, 4
- acute ards respiratory distress syndrome and macrophage activity: 1
Co phrase search for related documents, hyperlinks ordered by date