Author: Shen, Guojiang; Yu, Kaifeng; Zhang, Meiyu; Kong, Xiangjie
Title: ST-AFN: a spatial-temporal attention based fusion network for lane-level traffic flow prediction Cord-id: bm6iujes Document date: 2021_4_22
ID: bm6iujes
Snippet: Traffic flow prediction is the foundation of many applications in smart cities, and the granular precision of traffic flow prediction has to be enhanced with refined applications. However, most of the existing researches cannot meet these requirements. In this paper, we propose a spatial-temporal attention based fusion network (ST-AFN), for lane-level precise prediction. This seq2seq model consists of three parts, namely speed process network, spatial encoder, and temporal decoder. In order to e
Document: Traffic flow prediction is the foundation of many applications in smart cities, and the granular precision of traffic flow prediction has to be enhanced with refined applications. However, most of the existing researches cannot meet these requirements. In this paper, we propose a spatial-temporal attention based fusion network (ST-AFN), for lane-level precise prediction. This seq2seq model consists of three parts, namely speed process network, spatial encoder, and temporal decoder. In order to exploit the dynamic dependencies among lanes, attention mechanism blocks are embedded in those networks. The application of deep spatial-temporal information matrix results in progresses in term of reliability. Furthermore, a specific ground lane selection method is also proposed to ST-AFN. To evaluate the proposed model, four months of real-world traffic data are collected in Xiaoshan District, Hangzhou, China. Experimental results demonstrate that ST-AFN can achieve more accurate and stable results than the benchmark models. To the best of our knowledge, this is the first time that a deep learning method has been applied to forecast traffic flow at the lane level on urban ground roads instead of expressways or elevated roads.
Search related documents:
Co phrase search for related documents- absolute error and accuracy rate: 1
- absolute error and location attribute: 1, 2
- absolute error and long lstm short term memory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23
- absolute error and lstm network: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
- absolute error and lstm short term memory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23
- absolute error and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58
- absolute error and mae mean absolute error: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
- absolute percentage error and long lstm short term memory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
- absolute percentage error and lstm network: 1, 2, 3, 4, 5, 6, 7
- absolute percentage error and lstm short term memory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
- absolute percentage error and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24
- absolute percentage error and mae mean absolute error: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27
- accuracy improvement and long lstm short term memory: 1, 2
- accuracy improvement and lstm network: 1, 2, 3, 4, 5
- accuracy improvement and lstm short term memory: 1, 2
- accuracy improvement and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- accuracy improvement and mae mean absolute error: 1, 2
- accuracy rate and long lstm short term memory: 1, 2
Co phrase search for related documents, hyperlinks ordered by date