Selected article for: "antiviral activity and free energy"

Author: Fakih, T. M.
Title: Computational study of scorpion venom (Lychas mucronatus) activity as antimicrobial peptides (amps) to the sars-cov-2 main protease for the future coronavirus disease (covid-19) inhibitors
  • Cord-id: 9k0nujoc
  • Document date: 2021_1_1
  • ID: 9k0nujoc
    Snippet: The 2019 coronavirus pandemic disease (COVID-19) is still declared a global pandemic by the World Health Organization (WHO). Therefore, an effort that is considered effective in finding therapeutic agents is needed to prevent the spread of COVID-19 infection. One of the steps that can be chosen is by utilizing antimicrobial peptides (AMPs) from animal venom by targeting the specific receptor of SARS-CoV-2, namely the main protease (Mpro). Through this research, a computational approach will be c
    Document: The 2019 coronavirus pandemic disease (COVID-19) is still declared a global pandemic by the World Health Organization (WHO). Therefore, an effort that is considered effective in finding therapeutic agents is needed to prevent the spread of COVID-19 infection. One of the steps that can be chosen is by utilizing antimicrobial peptides (AMPs) from animal venom by targeting the specific receptor of SARS-CoV-2, namely the main protease (Mpro). Through this research, a computational approach will be conducted to predict antiviral activity, including protein-peptide docking using PatchDock algorithm, to identify, evaluate, and explore the affinity and molecular interactions of four types of antimicrobial peptides (AMPs), such as Mucroporin, Mucroporin-M1, Mucroporin-S1, and Mucroporin-S2 derived from scorpion venom (Lychas mucronatus) against main protease (Mpro) SARS-CoV-2. These results were then confirmed using protein-peptide interaction dynamics simulations for 50 ns using Gromacs 2016 to observe the molecular stability to the binding site of SARS-CoV-2 Mpro. Based on protein-peptide docking simulations, it was proven that the Mucroporin S-1 peptides have a good affinity against the active site area of SARS-CoV-2 Mpro, with an ACE score of −779.56 kJ/mol. Interestingly, Mucroporin-S1 was able to maintain the stability of its interactions based on the results of RMSD, RMSF, and MM/PBSA binding free energy calculations. The results of the computational approach predict that the Mucroporin-S1 peptide is expected to be useful for further research in the development of new antiviral-based AMPs for the COVID-19 infectious disease. © 2021, Universitas Jenderal Soedirman. All rights reserved.

    Search related documents:
    Co phrase search for related documents
    • Try single phrases listed below for: 1