Author: Özyılmaz, Sinem; Ergün Alış, Esra; Ermiş, Emrah; Allahverdiyev, Samir; Uçar, Hakan
Title: Assessment of the Relationship between Mortality and Troponin I Levels in Hospitalized Patients with the Novel Coronavirus (COVID-19) Cord-id: 9qogmvtm Document date: 2020_12_13
ID: 9qogmvtm
Snippet: Background and Objectives: This study aimed to evaluate the relationship between mortality and cardiac laboratory findings in patients who were hospitalized after a positive PCR for COVID-19 infection. Materials and Methods: This study included patients who were admitted to or referred to the hospital between 20 March and 20 June 2020, diagnosed with COVID-19 via a positive RT-PCR from nasal and pharyngeal swab samples. The troponin I level was measured from each patient. Medical records of pati
Document: Background and Objectives: This study aimed to evaluate the relationship between mortality and cardiac laboratory findings in patients who were hospitalized after a positive PCR for COVID-19 infection. Materials and Methods: This study included patients who were admitted to or referred to the hospital between 20 March and 20 June 2020, diagnosed with COVID-19 via a positive RT-PCR from nasal and pharyngeal swab samples. The troponin I level was measured from each patient. Medical records of patients were retrospectively reviewed and analyzed. Results: A hundred and five patients who were diagnosed with COVID-19 and hospitalized, or who died in the hospital due to COVID-19, were included in this study. There was a statistically significant difference between the troponin I high and low level groups in terms of age (years), BMI, shortness of breath (SB), oxygen saturation (%), hypertension, length of stay in the ICU; and for mortality, C-reactive protein, the neutrophil-to-lymphocyte ratio, hemoglobin, lactate dehydrogenase, ferritin, D-dimer, creatine kinase-MB, prothrombin time, calcium, and 25-hydroxy vitamin 25(OH)D3 (all p < 0.05). In the logistic analyses, a significant association was noted between troponin I and the adjusted risk of mortality. A ROC curve analysis identified troponin I values > 7.8 pg/mL as an effective cut-off point in mortality for patients with COVID-19. A troponin I value of higher than 7.8 pg/mL yielded a sensitivity of 78% and a specificity of 86%. Conclusions: The hospital mortality rate was higher among patients diagnosed with COVID-19 accompanied by troponin levels higher than 7.8 pg/mL. Therefore, in patients diagnosed with COVID-19, elevated troponin I levels >7.8 pg/mL can be considered an independent risk factor for mortality.
Search related documents:
Co phrase search for related documents- absence presence and acute kidney injury: 1, 2, 3, 4, 5, 6, 7
- absence presence and admission symptom onset: 1, 2
- absence presence and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63
- absence presence and logistic regression analysis: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- absence presence and lopinavir ritonavir: 1, 2
- absence presence and low troponin: 1
- absence presence and lung disease: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
- absence presence and lymphocyte count: 1, 2, 3, 4, 5, 6
- absence presence and lymphocyte count crp: 1
- absence presence and lymphocyte neutrophil: 1, 2, 3, 4, 5
- acute ards respiratory distress syndrome and admission measure: 1
- acute ards respiratory distress syndrome and admission symptom onset: 1, 2, 3, 4
- acute ards respiratory distress syndrome and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
- acute ards respiratory distress syndrome and logistic regression analysis: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24
- acute ards respiratory distress syndrome and lopinavir ritonavir: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35
- acute ards respiratory distress syndrome and low molecular weight heparin treatment: 1, 2
- acute ards respiratory distress syndrome and lung disease: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
- acute ards respiratory distress syndrome and lymphocyte count: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37
- acute ards respiratory distress syndrome and lymphocyte count crp: 1, 2, 3, 4, 5, 6, 7
Co phrase search for related documents, hyperlinks ordered by date