Author: lianglu zhang; kangkang wan; jing chen; changming lu; lanlan dong; zhicheng wu
Title: When will the battle against novel coronavirus end in Wuhan: a SEIR modeling analysis Document date: 2020_2_18
ID: 32vs98ya_6
Snippet: The SEIR model is a classical epidemic model for the flows of people between four states: susceptible (S), exposed (E), infected (I), and recovery (R). Each of those variables represents the number of people in those groups. The relationship among the four groups is elucidated in Figure 1 , where β1 is the probability of S to E after I contacts S, γ1 is the probability of E to I, and γ2 is the probability of I to R. Since 2019-nCoV is also inf.....
Document: The SEIR model is a classical epidemic model for the flows of people between four states: susceptible (S), exposed (E), infected (I), and recovery (R). Each of those variables represents the number of people in those groups. The relationship among the four groups is elucidated in Figure 1 , where β1 is the probability of S to E after I contacts S, γ1 is the probability of E to I, and γ2 is the probability of I to R. Since 2019-nCoV is also infectious in the incubation period, we introduced parameter β2 here to represent the probability of S to E after E contact S. We used the "susceptible exposedinfected -recovered" model [4] to describe the prevalent characteristics of 2019-nCoV in Wuhan .
Search related documents:
Co phrase search for related documents- epidemic model and group relationship: 1
- epidemic model and incubation period: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- epidemic model and SEIR model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- group people and incubation period: 1, 2, 3
- group people and SEIR model: 1, 2, 3, 4
- incubation period and SEIR model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
Co phrase search for related documents, hyperlinks ordered by date