Author: Nassir, A. A.; Baptiste, M. J.; Mwikarago, I.; Habimana, M. R.; Ndinkabandi, J.; Murangwa, A.; Nyatanyi, T.; Muvunyi, C. M.; Nsanzimana, S.; Leon, M.; Musanabaganwa, C.
Title: RPA-Based Method For The Detection Of SARS-CoV2 Cord-id: 9vpr5j3l Document date: 2020_9_18
ID: 9vpr5j3l
Snippet: Background: Coronavirus disease 2019 (COVID-19) is a highly infectious disease with significant mortality, morbidity, and far-reaching economic and social disruptions. Testing is key in the fight against COVID-19 disease. The gold standard for COVID-19 testing is the reverse transcription polymerase chain reaction (RT-PCR) test. RT-PCR requires highly specialized, expensive, and advanced bulky equipment that is difficult to use in the field or in a point of care setting. There is need for a simp
Document: Background: Coronavirus disease 2019 (COVID-19) is a highly infectious disease with significant mortality, morbidity, and far-reaching economic and social disruptions. Testing is key in the fight against COVID-19 disease. The gold standard for COVID-19 testing is the reverse transcription polymerase chain reaction (RT-PCR) test. RT-PCR requires highly specialized, expensive, and advanced bulky equipment that is difficult to use in the field or in a point of care setting. There is need for a simpler, inexpensive, convenient, portable and accurate test. Our aims were to: (i) design primer-probe pairs for use in isothermal amplification of the S1, ORF3 and ORF8 regions of the SARS-CoV2 virus; (ii) optimize the recombinase polymerase amplification (RPA) assay for the isothermal amplification of the named SARS-COV2 regions; (iii) detect amplification products on a lateral flow device. and (ii) perform a pilot field validation of RPA on RNA extracted from nasopharyngeal swabs. Results: Assay validation was done at the National Reference Lab (NRL) at the Rwanda Biomedical Center (RBC) in Rwanda. Results were compared to an established, WHO-approved rRT-PCR laboratory protocol. The assay provides a faster and cheaper alternative to rRT-PCR with 100% sensitivity, 93% specificity, and positive and negative predictive agreements of 100% and 93% respectively. Conclusion: To the best of our knowledge, this is the first in-field and comparative laboratory validation of RPA for COVID-19 disease in low resource settings. Further standardization will be required for deployment of the RPA assay in field settings. Keywords: Recombinase Polymerase Amplification, COVID-19
Search related documents:
Co phrase search for related documents- accuracy rate and lr positive likelihood ratio: 1, 2
- acid solution and lysis buffer: 1
Co phrase search for related documents, hyperlinks ordered by date