Selected article for: "crystal structure and hydrogen bond"

Author: Forrestall, Katrina L.; Burley, Darcy E.; Cash, Meghan K.; Pottie, Ian R.; Darvesh, Sultan
Title: 2-Pyridone natural products as inhibitors of SARS-CoV-2 main protease
  • Cord-id: ka5cn6nn
  • Document date: 2020_12_2
  • ID: ka5cn6nn
    Snippet: The disease, COVID-19, is caused by the severe acute respiratory coronavirus 2 (SARS-CoV-2) for which there is currently no treatment. The SARS-CoV-2 main protease (M(pro)) is an important enzyme for viral replication. Small molecules that inhibit this protease could lead to an effective COVID-19 treatment. The 2-pyridone scaffold was previously identified as a possible key pharmacophore to inhibit SARS-CoV-2 M(pro). A search for natural, antimicrobial products with the 2-pyridone moiety was und
    Document: The disease, COVID-19, is caused by the severe acute respiratory coronavirus 2 (SARS-CoV-2) for which there is currently no treatment. The SARS-CoV-2 main protease (M(pro)) is an important enzyme for viral replication. Small molecules that inhibit this protease could lead to an effective COVID-19 treatment. The 2-pyridone scaffold was previously identified as a possible key pharmacophore to inhibit SARS-CoV-2 M(pro). A search for natural, antimicrobial products with the 2-pyridone moiety was undertaken herein, and their calculated potency as inhibitors of SARS-CoV-2 M(pro) was investigated. Thirty-three natural products containing the 2-pyridone scaffold were identified from the literature. An in silico methodology using AutoDock was employed to predict the binding energies and inhibition constants (K(i) values) for each 2-pyridone-containing compound with SARS-CoV-2 M(pro). This consisted of molecular optimization of the 2-pyridone compound, docking of the compound with a crystal structure of SARS-CoV-2 M(pro), and evaluation of the predicted interactions and ligand-enzyme conformations. All compounds investigated bound to the active site of SARS-CoV-2 M(pro), close to the catalytic dyad (His-41 and Cys-145). Thirteen molecules had predicted K(i) values < 1 μM. Glu-166 formed a key hydrogen bond in the majority of the predicted complexes, while Met-165 had some involvement in the complex binding as a close contact to the ligand. Prominent 2-pyridone compounds were further evaluated for their ADMET properties. This work has identified 2-pyridone natural products with calculated potent inhibitory activity against SARS-CoV-2 M(pro) and with desirable drug-like properties, which may lead to the rapid discovery of a treatment for COVID-19.

    Search related documents:
    Co phrase search for related documents
    • active compound and low binding: 1
    • active compound and low binding energy: 1
    • active compound and low toxicity: 1
    • active site and acute sars cov respiratory syndrome coronavirus: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • active site and admet analysis: 1, 2, 3, 4, 5, 6
    • active site and low binding: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
    • active site and low binding energy: 1, 2, 3, 4, 5, 6
    • active site and low toxicity: 1, 2
    • acute sars cov respiratory syndrome coronavirus and additional compound: 1
    • acute sars cov respiratory syndrome coronavirus and admet analysis: 1, 2, 3, 4, 5, 6
    • acute sars cov respiratory syndrome coronavirus and low binding: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22
    • acute sars cov respiratory syndrome coronavirus and low binding energy: 1, 2, 3, 4, 5, 6
    • acute sars cov respiratory syndrome coronavirus and low toxicity: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18
    • admet analysis and low binding: 1
    • admet analysis and low binding energy: 1