Author: Ibrahim, Dina M.; Elshennawy, Nada M.; Sarhan, Amany M.
Title: Deep-Chest: Multi-Classification Deep Learning Model for Diagnosing COVID-19, Pneumonia, and Lung Cancer Chest Diseases Cord-id: nk0uh4ps Document date: 2021_3_19
ID: nk0uh4ps
Snippet: Corona Virus Disease (COVID-19) has been announced as a pandemic and is spreading rapidly throughout the world. Early detection of COVID-19 may protect many infected people. Unfortunately, COVID-19 can be mistakenly diagnosed as pneumonia or lung cancer, which with fast spread in the chest cells, can lead to patient death. The most commonly used diagnosis methods for these three diseases are chest X-ray and computed tomography (CT) images. In this paper, a multi-classification deep learning mode
Document: Corona Virus Disease (COVID-19) has been announced as a pandemic and is spreading rapidly throughout the world. Early detection of COVID-19 may protect many infected people. Unfortunately, COVID-19 can be mistakenly diagnosed as pneumonia or lung cancer, which with fast spread in the chest cells, can lead to patient death. The most commonly used diagnosis methods for these three diseases are chest X-ray and computed tomography (CT) images. In this paper, a multi-classification deep learning model for diagnosing COVID-19, pneumonia, and lung cancer from a combination of chest x-ray and CT images is proposed. This combination has been used because chest X-ray is less powerful in the early stages of the disease, while a CT scan of the chest is useful even before symptoms appear, and CT can precisely detect the abnormal features that are identified in images. In addition, using these two types of images will increase the dataset size, which will increase the classification accuracy. To the best of our knowledge, no other deep learning model choosing between these diseases is found in the literature. In the present work, the performance of four architectures are considered, namely: VGG19-CNN, ResNet152V2, ResNet152V2 + Gated Recurrent Unit (GRU), and ResNet152V2 + Bidirectional GRU (Bi-GRU). A comprehensive evaluation of different deep learning architectures is provided using public digital chest x-ray and CT datasets with four classes (i.e., Normal, COVID-19, Pneumonia, and Lung cancer). From the results of the experiments, it was found that the VGG19 +CNN model outperforms the three other proposed models. The VGG19+CNN model achieved 98.05% accuracy (ACC), 98.05% recall, 98.43% precision, 99.5% specificity (SPC), 99.3% negative predictive value (NPV), 98.24% F1 score, 97.7% Matthew’s correlation coefficient (MCC), and 99.66% area under the curve (AUC) based on X-ray and CT images.
Search related documents:
Co phrase search for related documents- acc accuracy and accuracy achieve: 1, 2
- acc accuracy and accuracy recall: 1, 2, 3
- acc accuracy and accuracy recall precision: 1
- acc accuracy and accuracy show: 1
- acceptable accuracy and accuracy addition: 1
- acceptable accuracy and accuracy recall: 1, 2
- acceptable accuracy and accuracy recall precision: 1
- acceptable accuracy and accuracy result: 1
- acceptable accuracy and accuracy show: 1
Co phrase search for related documents, hyperlinks ordered by date