Selected article for: "broad spectrum and japanese encephalitis"

Author: Deas, Tia S; Bennett, Corey J; Jones, Susan A; Tilgner, Mark; Ren, Ping; Behr, Melissa J; Stein, David A; Iversen, Patrick L; Kramer, Laura D; Bernard, Kristen A; Shi, Pei-Yong
Title: In vitro resistance selection and in vivo efficacy of morpholino oligomers against West Nile virus.
  • Cord-id: lnvl1rcf
  • Document date: 2007_1_1
  • ID: lnvl1rcf
    Snippet: We characterize in vitro resistance to and demonstrate the in vivo efficacy of two antisense phosphorodiamidate morpholino oligomers (PMOs) against West Nile virus (WNV). Both PMOs were conjugated with an Arg-rich peptide. One peptide-conjugated PMO (PPMO) binds to the 5' terminus of the viral genome (5'-end PPMO); the other targets an essential 3' RNA element required for genome cyclization (3' conserved sequence I [3' CSI] PPMO). The 3' CSI PPMO displayed a broad spectrum of antiflavivirus act
    Document: We characterize in vitro resistance to and demonstrate the in vivo efficacy of two antisense phosphorodiamidate morpholino oligomers (PMOs) against West Nile virus (WNV). Both PMOs were conjugated with an Arg-rich peptide. One peptide-conjugated PMO (PPMO) binds to the 5' terminus of the viral genome (5'-end PPMO); the other targets an essential 3' RNA element required for genome cyclization (3' conserved sequence I [3' CSI] PPMO). The 3' CSI PPMO displayed a broad spectrum of antiflavivirus activity, suppressing WNV, Japanese encephalitis virus, and St. Louis encephalitis virus, as demonstrated by reductions in viral titers of 3 to 5 logs in cell cultures, likely due to the absolute conservation of the 3' CSI PPMO-targeted sequences among these viruses. The selection and sequencing of PPMO-resistant WNV showed that the 5'-end-PPMO-resistant viruses contained two to three mismatches within the PPMO-binding site whereas the 3' CSI PPMO-resistant viruses accumulated mutations outside the PPMO-targeted region. The mutagenesis of a WNV infectious clone demonstrated that the mismatches within the PPMO-binding site were responsible for the 5'-end PPMO resistance. In contrast, a U insertion or a G deletion located within the 3'-terminal stem-loop of the viral genome was the determinant of the 3' CSI PPMO resistance. In a mouse model, both the 5'-end and 3' CSI PPMOs (administered at 100 or 200 microg/day) partially protected mice from WNV disease, with minimal to no PPMO-mediated toxicity. A higher treatment dose (300 microg/day) caused toxicity. Unconjugated PMOs (3 mg/day) showed neither efficacy nor toxicity, suggesting the importance of the peptide conjugate for efficacy. The results suggest that a modification of the peptide conjugate composition to reduce its toxicity yet maintain its ability to effectively deliver PMO into cells may improve PMO-mediated therapy.

    Search related documents:
    Co phrase search for related documents
    • Try single phrases listed below for: 1
    Co phrase search for related documents, hyperlinks ordered by date