Author: Chee, M. L.; Ong, M. E. H.; Siddiqui, F. J.; Zhang, Z.; Lim, S. L.; Ho, A. F. W.; Liu, N.
Title: Artificial Intelligence Applications for COVID-19 in Intensive Care and Emergency Settings: A Systematic Review Cord-id: bs3mppx0 Document date: 2021_2_18
ID: bs3mppx0
Snippet: Background: Little is known about the role of artificial intelligence (AI) as a decisive technology in the clinical management of COVID-19 patients. We aimed to systematically review and critically appraise the current evidence on AI applications for COVID-19 in intensive care and emergency settings, focusing on methods, reporting standards, and clinical utility. Methods: We systematically searched PubMed, Embase, Scopus, CINAHL, IEEE Xplore, and ACM Digital Library databases from inception to 1
Document: Background: Little is known about the role of artificial intelligence (AI) as a decisive technology in the clinical management of COVID-19 patients. We aimed to systematically review and critically appraise the current evidence on AI applications for COVID-19 in intensive care and emergency settings, focusing on methods, reporting standards, and clinical utility. Methods: We systematically searched PubMed, Embase, Scopus, CINAHL, IEEE Xplore, and ACM Digital Library databases from inception to 1 October 2020, without language restrictions. We included peer-reviewed original studies that applied AI for COVID-19 patients, healthcare workers, or health systems in intensive care, emergency or prehospital settings. We assessed predictive modelling studies using PROBAST (prediction model risk of bias assessment tool) and a modified TRIPOD (transparent reporting of a multivariable prediction model for individual prognosis or diagnosis) statement for AI. We critically appraised the methodology and key findings of all other studies. Results: Of fourteen eligible studies, eleven developed prognostic or diagnostic AI predictive models, all of which were assessed to be at high risk of bias. Common pitfalls included inadequate sample sizes, poor handling of missing data, failure to account for censored participants, and weak validation of models. Studies had low adherence to reporting guidelines, with particularly poor reporting on model calibration and blinding of outcome and predictor assessment. Of the remaining three studies, two evaluated the prognostic utility of deep learning-based lung segmentation software and one studied an AI-based system for resource optimisation in the ICU. These studies had similar issues in methodology, validation, and reporting. Conclusions: Current AI applications for COVID-19 are not ready for deployment in acute care settings, given their limited scope and poor quality. Our findings underscore the need for improvements to facilitate safe and effective clinical adoption of AI applications, for and beyond the COVID-19 pandemic.
Search related documents:
Co phrase search for related documents- location time and lung proportion: 1
- location time and machine learning: 1, 2, 3
- logistic regression and loss score: 1
- logistic regression and low sample size: 1
- logistic regression and lung involvement: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39
- logistic regression and lung proportion: 1
- logistic regression and lung segmentation: 1, 2, 3, 4
- logistic regression and lung segmentation software: 1
- logistic regression and machine learn: 1
- logistic regression and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74
- logistic regression and machine learning deep learning: 1, 2, 3, 4, 5, 6, 7, 8
- logistic regression and machine learning deep learning artificial intelligence: 1
- logistic regression model and lung involvement: 1, 2, 3, 4, 5, 6
- logistic regression model and lung segmentation: 1
- logistic regression model and machine learn: 1
- logistic regression model and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55
- logistic regression model development and machine learning: 1, 2
- loss score and lung segmentation: 1
- lung involvement and machine learning: 1, 2, 3, 4, 5, 6
Co phrase search for related documents, hyperlinks ordered by date