Author: Kim, Jinsun; Shin, Cha-Gyun
                    Title: IFITM proteins inhibit the late step of feline foamy virus replication  Cord-id: c9lro3ht  Document date: 2020_9_15
                    ID: c9lro3ht
                    
                    Snippet: Interferon-induced transmembrane (IFITM) proteins as host restriction factors are known to inhibit the replication of several viruses. In this study, transient IFITM expression vectors were used to investigate whether IFITMs inhibit feline foamy viral (FFV) replication and which step of viral replication is inhibited. In our studies, viral production was significantly reduced when cells were infected with FFV at almost same times such as −3, 0, or 3 h post-transfection with IFITM vector. Howev
                    
                    
                    
                     
                    
                    
                    
                    
                        
                            
                                Document: Interferon-induced transmembrane (IFITM) proteins as host restriction factors are known to inhibit the replication of several viruses. In this study, transient IFITM expression vectors were used to investigate whether IFITMs inhibit feline foamy viral (FFV) replication and which step of viral replication is inhibited. In our studies, viral production was significantly reduced when cells were infected with FFV at almost same times such as −3, 0, or 3 h post-transfection with IFITM vector. However viral production was not reduced even though cells were infected with FFV at 3 or 6 days post-transfection when production of IFITM proteins was maximized. Considering that IFITM expression was maximized at 3 days post-transfection, the stage of viral replication inhibited by IFITM appears to be the late step of viral replication. Moreover, the viral Gag proteins detected in the virus-infected cell lysates were proportionally correlated with viral titer of the culture supernatants. Therefore, it is likely that IFITMs can restrict production of FFV at the late step of viral replication.
 
  Search related documents: 
                                
                                Co phrase  search for related documents, hyperlinks ordered by date