Author: Jenkins, Tiffany; Wang, Rongzhang; Harder, Olivia; Xue, Miaoge; Chen, Phylip; Corry, Jacqueline; Walker, Christopher; Teng, Michael; Mejias, Asuncion; Ramilo, Octavio; Niewiesk, Stefan; Li, Jianrong; Peeples, Mark E
Title: A novel live attenuated RSV vaccine candidate with mutations in the L protein SAM binding site and the G protein cleavage site is protective in cotton rats and a rhesus macaque. Cord-id: am544tks Document date: 2020_11_11
ID: am544tks
Snippet: Respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory tract infections in children < 5 years of age worldwide, infecting the majority of infants in their first year of life. Despite the widespread impact of this virus, no vaccine is currently available. For over 50 years, live attenuated vaccines (LAV) have been shown to protect against other childhood viral infections, offering the advantage of presenting all viral proteins to the immune system for stimulation of bot
Document: Respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory tract infections in children < 5 years of age worldwide, infecting the majority of infants in their first year of life. Despite the widespread impact of this virus, no vaccine is currently available. For over 50 years, live attenuated vaccines (LAV) have been shown to protect against other childhood viral infections, offering the advantage of presenting all viral proteins to the immune system for stimulation of both B and T cell responses and memory. The RSV LAV candidate described here, rgRSV-L(G1857A)-G(L208A), contains two modifications: an attenuating mutation in the S-adenosylmethionine (SAM) binding site of the viral mRNA cap methyltransferase (MTase) within the large (L) polymerase protein and a mutation in the attachment (G) glycoprotein that inhibits its cleavage during production in Vero cells, resulting in virus with a "non-cleaved G" (ncG). RSV virions containing the ncG have an increased ability to infect primary well-differentiated human bronchial epithelial (HBE) cultures which model the in vivo site of immunization, the ciliated airway epithelium. This RSV LAV candidate is produced efficiently in Vero cells, is highly attenuated in HBE cultures, efficiently induces neutralizing antibodies that are long-lasting, and provides protection against an RSV challenge in the cotton rat, without causing enhanced disease. Similar results were obtained in a rhesus macaque.Importance Globally, RSV is a major cause of death in children under one year of age, yet no vaccine is available. We have generated a novel RSV live attenuated vaccine candidate containing mutations in the L and G proteins. The L polymerase mutation does not inhibit virus yield in Vero cells, the cell type required for vaccine production, but greatly reduces virus spread in HBE cultures, a logical in vitro predictor of in vivo attenuation. The G attachment protein mutation reduces its cleavage in Vero cells, thereby increasing vaccine virus yield, making vaccine production more economical. In cotton rats, this RSV vaccine candidate is highly attenuated at a dose of 105 PFU and completely protective following immunization with 500 PFU, 200-fold less than the dose usually used in such studies. It also induced long-lasting antibodies in cotton rats and protected a rhesus macaque from RSV challenge. This mutant virus is an excellent RSV live attenuated vaccine candidate.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date