Author: Zhang, Tao; Wu, Qunfu; Zhang, Zhigang
Title: Pangolin homology associated with 2019-nCoV Cord-id: ao7bkcv5 Document date: 2020_2_20
ID: ao7bkcv5
Snippet: To explore potential intermediate host of a novel coronavirus is vital to rapidly control continuous COVID-19 spread. We found genomic and evolutionary evidences of the occurrence of 2019-nCoV-like coronavirus (named as Pangolin-CoV) from dead Malayan Pangolins. Pangolin-CoV is 91.02% and 90.55% identical at the whole genome level to 2019-nCoV and BatCoV RaTG13, respectively. Pangolin-CoV is the lowest common ancestor of 2019-nCoV and RaTG13. The S1 protein of Pangolin-CoV is much more closely r
Document: To explore potential intermediate host of a novel coronavirus is vital to rapidly control continuous COVID-19 spread. We found genomic and evolutionary evidences of the occurrence of 2019-nCoV-like coronavirus (named as Pangolin-CoV) from dead Malayan Pangolins. Pangolin-CoV is 91.02% and 90.55% identical at the whole genome level to 2019-nCoV and BatCoV RaTG13, respectively. Pangolin-CoV is the lowest common ancestor of 2019-nCoV and RaTG13. The S1 protein of Pangolin-CoV is much more closely related to 2019-nCoV than RaTG13. Five key amino-acid residues involved in the interaction with human ACE2 are completely consistent between Pangolin-CoV and 2019-nCoV but four amino-acid mutations occur in RaTG13. It indicates Pangolin-CoV has similar pathogenic potential to 2019-nCoV, and would be helpful to trace the origin and probable intermediate host of 2019-nCoV.
Search related documents:
Co phrase search for related documents, hyperlinks ordered by date