Selected article for: "secondary structure and single secondary structure"

Author: Manfredonia, Ilaria; Nithin, Chandran; Ponce-Salvatierra, Almudena; Ghosh, Pritha; Wirecki, Tomasz K.; Marinus, Tycho; Ogando, Natacha S.; Snider, Eric J.; van Hemert, Martijn J.; Bujnicki, Janusz M.; Incarnato, Danny
Title: Genome-wide mapping of therapeutically-relevant SARS-CoV-2 RNA structures
  • Cord-id: cjmmeru0
  • Document date: 2020_6_15
  • ID: cjmmeru0
    Snippet: SARS-CoV-2 is a betacoronavirus with a linear single-stranded, positive-sense RNA genome of ∼30 kb, whose outbreak caused the still ongoing COVID-19 pandemic. The ability of coronaviruses to rapidly evolve, adapt, and cross species barriers makes the development of effective and durable therapeutic strategies a challenging and urgent need. As for other RNA viruses, genomic RNA structures are expected to play crucial roles in several steps of the coronavirus replication cycle. Despite this, onl
    Document: SARS-CoV-2 is a betacoronavirus with a linear single-stranded, positive-sense RNA genome of ∼30 kb, whose outbreak caused the still ongoing COVID-19 pandemic. The ability of coronaviruses to rapidly evolve, adapt, and cross species barriers makes the development of effective and durable therapeutic strategies a challenging and urgent need. As for other RNA viruses, genomic RNA structures are expected to play crucial roles in several steps of the coronavirus replication cycle. Despite this, only a handful of functionally conserved structural elements within coronavirus RNA genomes have been identified to date. Here, we performed RNA structure probing by SHAPE-MaP to obtain a single-base resolution secondary structure map of the full SARS-CoV-2 coronavirus genome. The SHAPE-MaP probing data recapitulate the previously described coronavirus RNA elements (5′ UTR, ribosomal frameshifting element, and 3′ UTR), and reveal new structures. Secondary structure-restrained 3D modeling of highly-structured regions across the SARS-CoV-2 genome allowed for the identification of several putative druggable pockets. Furthermore, ∼8% of the identified structure elements show significant covariation among SARS-CoV-2 and other coronaviruses, hinting at their functionally-conserved role. In addition, we identify a set of persistently single-stranded regions having high sequence conservation, suitable for the development of antisense oligonucleotide therapeutics. Collectively, our work lays the foundation for the development of innovative RNA-targeted therapeutic strategies to fight SARS-related infections.

    Search related documents: