Selected article for: "barrier function and epithelial cell"

Author: Robinot, Rémy; Hubert, Mathieu; de Melo, Guilherme Dias; Lazarini, Françoise; Bruel, Timothée; Smith, Nikaïa; Levallois, Sylvain; Larrous, Florence; Fernandes, Julien; Gellenoncourt, Stacy; Rigaud, Stéphane; Gorgette, Olivier; Thouvenot, Catherine; Trébeau, Céline; Mallet, Adeline; Duménil, Guillaume; Gobaa, Samy; Etournay, Raphaël; Lledo, Pierre-Marie; Lecuit, Marc; Bourhy, Hervé; Duffy, Darragh; Michel, Vincent; Schwartz, Olivier; Chakrabarti, Lisa A.
Title: SARS-CoV-2 infection damages airway motile cilia and impairs mucociliary clearance
  • Cord-id: c6gpnz0f
  • Document date: 2020_10_6
  • ID: c6gpnz0f
    Snippet: Understanding how SARS-CoV-2 spreads within the respiratory tract is important to define the parameters controlling the severity of COVID-19. We examined the functional and structural consequences of SARS-CoV-2 infection in a reconstituted human bronchial epithelium model. SARS-CoV-2 replication caused a transient decrease in epithelial barrier function and disruption of tight junctions, though viral particle crossing remained limited. Rather, SARS-CoV-2 replication led to a rapid loss of the ci
    Document: Understanding how SARS-CoV-2 spreads within the respiratory tract is important to define the parameters controlling the severity of COVID-19. We examined the functional and structural consequences of SARS-CoV-2 infection in a reconstituted human bronchial epithelium model. SARS-CoV-2 replication caused a transient decrease in epithelial barrier function and disruption of tight junctions, though viral particle crossing remained limited. Rather, SARS-CoV-2 replication led to a rapid loss of the ciliary layer, characterized at the ultrastructural level by axoneme loss and misorientation of remaining basal bodies. The motile cilia function was compromised, as measured in a mucociliary clearance assay. Epithelial defense mechanisms, including basal cell mobilization and interferon-lambda induction, ramped up only after the initiation of cilia damage. Analysis of SARS-CoV-2 infection in Syrian hamsters further demonstrated the loss of motile cilia in vivo. This study identifies cilia damage as a pathogenic mechanism that could facilitate SARS-CoV-2 spread to the deeper lung parenchyma.

    Search related documents:
    Co phrase search for related documents
    • acute ards respiratory distress syndrome and lung mucus: 1, 2