Author: Kim, Dongmin; Han, Sumin; Son, Heesuk; Lee, Dongman
Title: Human Activity Recognition Using Semi-supervised Multi-modal DEC for Instagram Data Cord-id: p77j6nhr Document date: 2020_4_17
ID: p77j6nhr
Snippet: Human Activity Recognition (HAR) using social media provides a solid basis for a variety of context-aware applications. Existing HAR approaches have adopted supervised machine learning algorithms using texts and their meta-data such as time, venue, and keywords. However, their recognition accuracy may decrease when applied to image-sharing social media where users mostly describe their daily activities and thoughts using both texts and images. In this paper, we propose a semi-supervised multi-mo
Document: Human Activity Recognition (HAR) using social media provides a solid basis for a variety of context-aware applications. Existing HAR approaches have adopted supervised machine learning algorithms using texts and their meta-data such as time, venue, and keywords. However, their recognition accuracy may decrease when applied to image-sharing social media where users mostly describe their daily activities and thoughts using both texts and images. In this paper, we propose a semi-supervised multi-modal deep embedding clustering method to recognize human activities on Instagram. Our proposed method learns multi-modal feature representations by alternating a supervised learning phase and an unsupervised learning phase. By utilizing a large number of unlabeled data, it learns a more generalized feature distribution for each HAR class and avoids overfitting to limited labeled data. Evaluation results show that leveraging multi-modality and unlabeled data is effective for HAR and our method outperforms existing approaches.
Search related documents:
Co phrase search for related documents- accuracy improvement and loss function: 1, 2, 3
- accuracy improvement and lstm short term memory: 1, 2
- accuracy improvement and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- accuracy score and long lstm short term memory: 1, 2, 3, 4, 5, 6, 7
- accuracy score and long lstm short term memory model: 1
- accuracy score and loss function: 1, 2
- accuracy score and lstm short term memory: 1, 2, 3, 4, 5, 6, 7
- accuracy score and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- long lstm short term memory and loss function: 1, 2, 3, 4
- long lstm short term memory and lstm short term memory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- long lstm short term memory model and loss function: 1, 2
- long lstm short term memory model and lstm short term memory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- loss function and lstm short term memory: 1, 2, 3, 4
Co phrase search for related documents, hyperlinks ordered by date