Selected article for: "accuracy decrease and machine learning"

Author: Kim, Dongmin; Han, Sumin; Son, Heesuk; Lee, Dongman
Title: Human Activity Recognition Using Semi-supervised Multi-modal DEC for Instagram Data
  • Cord-id: p77j6nhr
  • Document date: 2020_4_17
  • ID: p77j6nhr
    Snippet: Human Activity Recognition (HAR) using social media provides a solid basis for a variety of context-aware applications. Existing HAR approaches have adopted supervised machine learning algorithms using texts and their meta-data such as time, venue, and keywords. However, their recognition accuracy may decrease when applied to image-sharing social media where users mostly describe their daily activities and thoughts using both texts and images. In this paper, we propose a semi-supervised multi-mo
    Document: Human Activity Recognition (HAR) using social media provides a solid basis for a variety of context-aware applications. Existing HAR approaches have adopted supervised machine learning algorithms using texts and their meta-data such as time, venue, and keywords. However, their recognition accuracy may decrease when applied to image-sharing social media where users mostly describe their daily activities and thoughts using both texts and images. In this paper, we propose a semi-supervised multi-modal deep embedding clustering method to recognize human activities on Instagram. Our proposed method learns multi-modal feature representations by alternating a supervised learning phase and an unsupervised learning phase. By utilizing a large number of unlabeled data, it learns a more generalized feature distribution for each HAR class and avoids overfitting to limited labeled data. Evaluation results show that leveraging multi-modality and unlabeled data is effective for HAR and our method outperforms existing approaches.

    Search related documents:
    Co phrase search for related documents
    • accuracy improvement and loss function: 1, 2, 3
    • accuracy improvement and lstm short term memory: 1, 2
    • accuracy improvement and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • accuracy score and long lstm short term memory: 1, 2, 3, 4, 5, 6, 7
    • accuracy score and long lstm short term memory model: 1
    • accuracy score and loss function: 1, 2
    • accuracy score and lstm short term memory: 1, 2, 3, 4, 5, 6, 7
    • accuracy score and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • long lstm short term memory and loss function: 1, 2, 3, 4
    • long lstm short term memory and lstm short term memory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • long lstm short term memory model and loss function: 1, 2
    • long lstm short term memory model and lstm short term memory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • loss function and lstm short term memory: 1, 2, 3, 4