Author: Su, Chang; Zhang, Yongkang; Flory, James H.; Weiner, Mark G.; Kaushal, Rainu; Schenck, Edward J.; Wang, Fei
Title: Clinical subphenotypes in COVID-19: derivation, validation, prediction, temporal patterns, and interaction with social determinants of health Cord-id: 5bdj9kqo Document date: 2021_7_14
ID: 5bdj9kqo
Snippet: The coronavirus disease 2019 (COVID-19) is heterogeneous and our understanding of the biological mechanisms of host response to the viral infection remains limited. Identification of meaningful clinical subphenotypes may benefit pathophysiological study, clinical practice, and clinical trials. Here, our aim was to derive and validate COVID-19 subphenotypes using machine learning and routinely collected clinical data, assess temporal patterns of these subphenotypes during the pandemic course, and
Document: The coronavirus disease 2019 (COVID-19) is heterogeneous and our understanding of the biological mechanisms of host response to the viral infection remains limited. Identification of meaningful clinical subphenotypes may benefit pathophysiological study, clinical practice, and clinical trials. Here, our aim was to derive and validate COVID-19 subphenotypes using machine learning and routinely collected clinical data, assess temporal patterns of these subphenotypes during the pandemic course, and examine their interaction with social determinants of health (SDoH). We retrospectively analyzed 14418 COVID-19 patients in five major medical centers in New York City (NYC), between March 1 and June 12, 2020. Using clustering analysis, 4 biologically distinct subphenotypes were derived in the development cohort (N = 8199). Importantly, the identified subphenotypes were highly predictive of clinical outcomes (especially 60-day mortality). Sensitivity analyses in the development cohort, and rederivation and prediction in the internal (N = 3519) and external (N = 3519) validation cohorts confirmed the reproducibility and usability of the subphenotypes. Further analyses showed varying subphenotype prevalence across the peak of the outbreak in NYC. We also found that SDoH specifically influenced mortality outcome in Subphenotype IV, which is associated with older age, worse clinical manifestation, and high comorbidity burden. Our findings may lead to a better understanding of how COVID-19 causes disease in different populations and potentially benefit clinical trial development. The temporal patterns and SDoH implications of the subphenotypes may add insights to health policy to reduce social disparity in the pandemic.
Search related documents:
Co phrase search for related documents- abnormal inflammatory and liver injury: 1
- abnormal inflammatory and logistic regression: 1
- abnormal inflammatory and logistic regression analysis: 1
- abnormal marker and logistic regression: 1
- abnormal renal and liver injury: 1
- abnormal renal and logistic regression: 1, 2
- abnormal value and admission rate: 1
- abnormal value and liver injury: 1
- abnormal value and logistic regression: 1, 2, 3, 4, 5, 6
- abnormal value and logistic regression analysis: 1
Co phrase search for related documents, hyperlinks ordered by date