Author: Ahmed, Tanvir; Wendling, Hannah E.; Mofakham, Amir A.; Ahmadi, Goodarz; Helenbrook, Brian T.; Ferro, Andrea R.; Brown, Deborah M.; Erath, Byron D.
Title: Variability in expiratory trajectory angles during consonant production by one human subject and from a physical mouth model: Application to respiratory droplet emission Cord-id: 6s2rprd4 Document date: 2021_7_23
ID: 6s2rprd4
Snippet: The COVIDâ€19 pandemic has highlighted the need to improve understanding of droplet transport during expiratory emissions. While historical emphasis has been placed on violent events such as coughing and sneezing, the recognition of asymptomatic and presymptomatic spread has identified the need to consider other modalities, such as speaking. Accurate prediction of infection risk produced by speaking requires knowledge of both the droplet size distributions that are produced, as well as the expi
Document: The COVIDâ€19 pandemic has highlighted the need to improve understanding of droplet transport during expiratory emissions. While historical emphasis has been placed on violent events such as coughing and sneezing, the recognition of asymptomatic and presymptomatic spread has identified the need to consider other modalities, such as speaking. Accurate prediction of infection risk produced by speaking requires knowledge of both the droplet size distributions that are produced, as well as the expiratory flow fields that transport the droplets into the surroundings. This work demonstrates that the expiratory flow field produced by consonant productions is highly unsteady, exhibiting extremely broad inter†and intraâ€consonant variability, with mean ejection angles varying from ≈+30° to −30°. Furthermore, implementation of a physical mouth model to quantify the expiratory flow fields for fricative pronunciation of [f] and [θ] demonstrates that flow velocities at the lips are higher than previously predicted, reaching 20–30 m/s, and that the resultant trajectories are unstable. Because both large and small droplet transport are directly influenced by the magnitude and trajectory of the expirated air stream, these findings indicate that prior investigations of the flow dynamics during speech have largely underestimated the fluid penetration distances that can be achieved for particular consonant utterances.
Search related documents:
Co phrase search for related documents, hyperlinks ordered by date