Selected article for: "extinction threshold and reproduction number"

Author: Faniran, T. S.; Bakare, E. A.; Falade, A. O.
Title: The COVID-19 Model with Partially Recovered Carriers
  • Cord-id: bcasoe6u
  • Document date: 2021_1_1
  • ID: bcasoe6u
    Snippet: Novel coronavirus (COVID-19) has been spreading and wreaking havoc globally, despite massive efforts by the government and World Health Organization (WHO). Consideration of partially recovered carriers is hypothesized to play a leading role in the persistence of the disease and its introduction to new areas. A model for transmission of COVID-19 by symptomless partially recovered carriers is proposed and analysed. It is shown that key parameters can be identified such that below a threshold level
    Document: Novel coronavirus (COVID-19) has been spreading and wreaking havoc globally, despite massive efforts by the government and World Health Organization (WHO). Consideration of partially recovered carriers is hypothesized to play a leading role in the persistence of the disease and its introduction to new areas. A model for transmission of COVID-19 by symptomless partially recovered carriers is proposed and analysed. It is shown that key parameters can be identified such that below a threshold level, built on these parameters, the epidemic tends towards extinction, while above another threshold, it tends towards a nontrivial epidemic state. Moreover, optimal control analysis of the model, using Pontryagin's maximum principle, is performed. The optimal controls are characterized in terms of the optimality system and solved numerically for several scenarios. Numerical simulations and sensitivity analysis of the basic reproduction number, R c , indicate that the disease is mainly driven by parameters involving the partially recovered carriers rather than symptomatic ones. Moreover, optimal control analysis of the model, using Pontryagin's maximum principle, is performed. The optimal controls were characterized in terms of the optimality system and solved numerically for several scenarios. Numerical simulations were explored to illustrate our theoretical findings, scenarios were built, and the model predicted that social distancing and treatment of the symptomatic will slow down the epidemic curve and reduce mortality of COVID-19 given that there is an average adherence to social distancing and effective treatment are administered. [ABSTRACT FROM AUTHOR] Copyright of Journal of Applied Mathematics is the property of Hindawi Limited and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

    Search related documents:
    Co phrase search for related documents
    • Try single phrases listed below for: 1
    Co phrase search for related documents, hyperlinks ordered by date