Author: Deb, Subrata; Arrighi, Scott
Title: Potential Effects of COVID-19 on Cytochrome P450-Mediated Drug Metabolism and Disposition in Infected Patients Cord-id: dxw7uyoy Document date: 2021_2_4
ID: dxw7uyoy
Snippet: Coronavirus Disease 2019 (COVID-19) has been a global health crisis since it was first identified in December 2019. In addition to fever, cough, headache, and shortness of breath, an intense increase in immune response-based inflammation has been the hallmark of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) virus infection. This narrative review summarizes and critiques pathophysiology of COVID-19 and its plausible effects on drug metabolism and disposition. The release of inflammat
Document: Coronavirus Disease 2019 (COVID-19) has been a global health crisis since it was first identified in December 2019. In addition to fever, cough, headache, and shortness of breath, an intense increase in immune response-based inflammation has been the hallmark of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) virus infection. This narrative review summarizes and critiques pathophysiology of COVID-19 and its plausible effects on drug metabolism and disposition. The release of inflammatory cytokines (e.g., interleukins, tumor necrosis factor α), also known as ‘cytokine storm’, leads to altered molecular pathophysiology and eventually organ damage in the lung, heart, and liver. The laboratory values for various liver function tests (e.g., alanine aminotransferase, aspartate aminotransferase, total bilirubin, albumin) have indicated potential hepatocellular injury in COVID-19 patients. Since the liver is the powerhouse of protein synthesis and the primary site of cytochrome P450 (CYP)-mediated drug metabolism, even a minor change in the liver function status has the potential to affect the hepatic clearance of xenobiotics. It has now been well established that extreme increases in cytokine levels are common in COVID-19 patients, and previous studies with patients infected with non-SARS-CoV-2 virus have shown that CYP enzymes can be suppressed by an infection-related cytokine increase and inflammation. Alongside the investigational COVID-19 drugs, the patients may also be on therapeutics for comorbidities; especially epidemiological studies have indicated that individuals with hypertension, hyperglycemia, and obesity are more vulnerable to COVID-19 than the average population. This complicates the drug-disease interaction profile of the patients as both the investigational drugs (e.g., remdesivir, dexamethasone) and the agents for comorbidities can be affected by compromised CYP-mediated hepatic metabolism. Overall, it is imperative that healthcare professionals pay attention to the COVID-19 and CYP-driven drug metabolism interactions with the goal to adjust the dose or discontinue the affected drugs as appropriate.
Search related documents:
Co phrase search for related documents- acute respiratory syndrome coronavirus and additional challenge: 1, 2, 3
- acute respiratory syndrome coronavirus and adjustment dose: 1, 2, 3, 4, 5, 6
- acute respiratory syndrome coronavirus and adjuvant therapy: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30
- acute respiratory syndrome coronavirus and liver abnormality: 1
- acute respiratory syndrome coronavirus and liver affect: 1, 2, 3, 4, 5, 6
- acute respiratory syndrome coronavirus and liver damage: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53
- acute respiratory syndrome coronavirus and liver direct infection: 1, 2, 3, 4
- acute respiratory syndrome coronavirus and liver dysfunction: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38
- acute respiratory syndrome coronavirus and liver dysfunction prognosis: 1
- acute respiratory syndrome coronavirus and liver function inflammation: 1, 2
- acute respiratory syndrome coronavirus and liver function test: 1, 2, 3, 4, 5, 6, 7
- acute respiratory syndrome coronavirus and liver health: 1, 2, 3, 4, 5, 6, 7
- acute respiratory syndrome coronavirus and liver injury: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
- acute respiratory syndrome coronavirus and liver marker: 1
- acute respiratory syndrome coronavirus and liver test: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
- acute respiratory syndrome coronavirus and load clearance: 1, 2, 3, 4, 5
- acute respiratory syndrome coronavirus and loading dose: 1, 2, 3, 4, 5, 6, 7, 8, 9
- acute respiratory syndrome coronavirus and local release: 1, 2
- acute respiratory syndrome coronavirus and lopinavir trough: 1
Co phrase search for related documents, hyperlinks ordered by date