Author: Liu, Ting; Yan, Fangyou; Jia, Qingzhu; Wang, Qiang
Title: Norm index-based QSAR models for acute toxicity of organic compounds toward zebrafish embryo. Cord-id: e0bed1rn Document date: 2020_10_15
ID: e0bed1rn
Snippet: Zebrafish embryos are highly sensitive to toxicant exposure and have been used to evaluate the potential eco-toxicity caused by organic pollutants in the aquatic environment. This study was to develop four quantitative structure-activity relationship (QSAR) models based on norm descriptors for acute toxicity of different exposure times toward zebrafish embryo of organic compounds with various structures. Norm descriptors were obtained by calculating the norm index of the atomic distribution matr
Document: Zebrafish embryos are highly sensitive to toxicant exposure and have been used to evaluate the potential eco-toxicity caused by organic pollutants in the aquatic environment. This study was to develop four quantitative structure-activity relationship (QSAR) models based on norm descriptors for acute toxicity of different exposure times toward zebrafish embryo of organic compounds with various structures. Norm descriptors were obtained by calculating the norm index of the atomic distribution matrix, which was composed of atomic spatial distribution and atomic properties. These norm index-based QSAR models presented satisfactory results with R2 of 0.8549, 0.9162, 0.8335 and 0.8119 for 48, 96, 120 and 132 h, respectively. Validation results including cross validation, external validation, Y-randomized test and applicability domain analysis indicated that the proposed models were stable, robust and reliable. Accordingly, these norm descriptors might be effective in predicting the acute toxicity of various organics to zebrafish embryos, which might be useful for evaluating the potential hazards of organic pollutants to aquatic environment.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date