Selected article for: "change point and data point"

Author: Fryzlewicz, Piotr
Title: Robust Narrowest Significance Pursuit: inference for multiple change-points in the median
  • Cord-id: r4e9fa82
  • Document date: 2021_9_6
  • ID: r4e9fa82
    Snippet: We propose Robust Narrowest Significance Pursuit (RNSP), a methodology for detecting localised regions in data sequences which each must contain a change-point in the median, at a prescribed global significance level. RNSP works by fitting the postulated constant model over many regions of the data using a new sign-multiresolution sup-norm-type loss, and greedily identifying the shortest intervals on which the constancy is significantly violated. By working with the signs of the data around fitt
    Document: We propose Robust Narrowest Significance Pursuit (RNSP), a methodology for detecting localised regions in data sequences which each must contain a change-point in the median, at a prescribed global significance level. RNSP works by fitting the postulated constant model over many regions of the data using a new sign-multiresolution sup-norm-type loss, and greedily identifying the shortest intervals on which the constancy is significantly violated. By working with the signs of the data around fitted model candidates, RNSP is able to work under minimal assumptions, requiring only sign-symmetry and serial independence of the signs of the true residuals. In particular, it permits their heterogeneity and arbitrarily heavy tails. The intervals of significance returned by RNSP have a finite-sample character, are unconditional in nature and do not rely on any assumptions on the true signal. Code implementing RNSP is available at https://github.com/pfryz/nsp.

    Search related documents:
    Co phrase search for related documents
    • Try single phrases listed below for: 1