Author: Devana, Sai K.; Shah, Akash A.; Lee, Changhee; Roney, Andrew R.; van der Schaar, Mihaela; SooHoo, Nelson F.
Title: A Novel, Potentially Universal Machine Learning Algorithm to Predict Complications in Total Knee Arthroplasty Cord-id: 68ydsya7 Document date: 2021_8_2
ID: 68ydsya7
Snippet: BACKGROUND: There remains a lack of accurate and validated outcome-prediction models in total knee arthroplasty (TKA). While machine learning (ML) is a powerful predictive tool, determining the proper algorithm to apply across diverse data sets is challenging. AutoPrognosis (AP) is a novel method that uses automated ML framework to incorporate the best performing stages of prognostic modeling into a single well-calibrated algorithm. We aimed to compare various ML methods to AP in predictive perf
Document: BACKGROUND: There remains a lack of accurate and validated outcome-prediction models in total knee arthroplasty (TKA). While machine learning (ML) is a powerful predictive tool, determining the proper algorithm to apply across diverse data sets is challenging. AutoPrognosis (AP) is a novel method that uses automated ML framework to incorporate the best performing stages of prognostic modeling into a single well-calibrated algorithm. We aimed to compare various ML methods to AP in predictive performance of complications after TKA. METHODS: Thirty-eight preoperative patient demographics and clinical features from all primary TKAs performed at California-licensed hospitals between 2015 and 2017 were evaluated as predictors of major complications after TKA. Traditional logistic regression (LR), various other ML methods (XGBoost, Gradient Boosting, AdaBoost, and Random Forest), and AP were used for model building to determine discriminative power (area under receiver operating curve), calibration (Brier score), and feature importance. RESULTS: Between 2015 and 2017, there were a total of 156,750 TKAs with 1109 (0.7%) total major complications. AP had the highest discriminative performance with area under receiver operating curve 0.679 compared with LR, XGBoost, Gradient Boosting, AdaBoost, and Random Forest (0.617, 0.601, 0.662, 0.657, and 0.545, respectively). AP (Brier score 0.007) had similar calibration as the other ML methods (0.006, 0.006, 0.022, 0.007, and 0.008, respectively). The variables that are most important for AP differ from those that are most important for LR. CONCLUSION: Compared to conventional ML algorithms, AP has superior discriminative ability with similar calibration and suggests nonlinear relationships between variables in outcomes of TKA.
Search related documents:
Co phrase search for related documents- logarithmic scale and machine learning: 1, 2
- logistic regression and low clinical utility: 1, 2
- logistic regression and low quality: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22
- logistic regression and low socioeconomic status: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
- logistic regression and lr algorithm: 1, 2, 3, 4
- logistic regression and lr important: 1
- logistic regression and lr logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65
- logistic regression and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74
- low quality and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
- low socioeconomic status and machine learning: 1
- lr algorithm and lr logistic regression: 1, 2, 3
- lr algorithm and machine learning: 1, 2, 3, 4
- lr important and lr logistic regression: 1
- lr logistic regression and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45
Co phrase search for related documents, hyperlinks ordered by date