Author: Lee, Hansaem; Lee, Tae-Young; Jeon, Pyeonghwa; Kim, Nayoung; Kim, Jun-Won; Yang, Jeong-Sun; Kim, Kyung-Chang; Lee, Joo-Yeon
Title: J2N-k hamster model simulates severe infection caused by severe acute respiratory syndrome coronavirus 2 in patients with cardiovascular diseases Cord-id: q1qkve7o Document date: 2021_9_30
ID: q1qkve7o
Snippet: Considering the global impact of the coronavirus disease 2019 (COVID-19) pandemic, generating suitable experimental models is imperative. For pre-clinical studies, researchers require animal models displaying pathological features similar to those observed in patients; therefore, establishing animal models for COVID-19 is crucial. The golden Syrian hamster model mimics conditions observed in humans with mild severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, a golde
Document: Considering the global impact of the coronavirus disease 2019 (COVID-19) pandemic, generating suitable experimental models is imperative. For pre-clinical studies, researchers require animal models displaying pathological features similar to those observed in patients; therefore, establishing animal models for COVID-19 is crucial. The golden Syrian hamster model mimics conditions observed in humans with mild severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, a golden Syrian hamster model of severe infection has not been reported. J2N-k hamsters are utilized as a cardiomyopathy model; therefore, we used cardiomyopathic J2N-k hamsters showing conditions similar to those of severe COVID-19 complicated with cardiovascular diseases, as patients with cardiovascular diseases exhibit a higher risk of morbidity and mortality due to COVID-19 than patients without cardiovascular diseases. Unlike that in golden Syrian hamsters, SARS-CoV-2 infection was lethal in J2N-k hamsters, with a median lethal dose of 10(4.75) plaque-forming units for the S clade of SARS-CoV-2 (A, GenBank: MW466791.1). High viral titers and viral genomes were detected in the lungs of J2N-k and golden Syrian hamster models harvested 3 days after infection. Pathological features of SARS-CoV-2-associated lung injury were observed in both models. The J2N-k hamster model can aid in developing vaccines or therapeutics against COVID-19.
Search related documents:
Co phrase search for related documents- acute respiratory syndrome and live virus: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome and log10 genome: 1
- acute respiratory syndrome and low number: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome and lung detect: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
- acute respiratory syndrome and lung tissue: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome and lung tissue detect: 1, 2
- live virus and low number: 1, 2
- live virus and lung live virus titer: 1
- live virus and lung tissue: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
- live virus titer and lung live virus titer: 1
- low number and lung detect: 1
- low number and lung tissue: 1, 2, 3
Co phrase search for related documents, hyperlinks ordered by date