Author: Katsuki, Masahito; Kakizawa, Yukinari; Nishikawa, Akihiro; Yamamoto, Yasunaga; Uchiyama, Toshiya
Title: Easily created prediction model using deep learning software (Prediction One, Sony Network Communications Inc.) for subarachnoid hemorrhage outcomes from small dataset at admission Cord-id: eckdqfp0 Document date: 2020_11_6
ID: eckdqfp0
Snippet: BACKGROUND: Reliable prediction models of subarachnoid hemorrhage (SAH) outcomes are needed for decision-making of the treatment. SAFIRE score using only four variables is a good prediction scoring system. However, making such prediction models needs a large number of samples and time-consuming statistical analysis. Deep learning (DL), one of the artificial intelligence, is attractive, but there were no reports on prediction models for SAH outcomes using DL. We herein made a prediction model usi
Document: BACKGROUND: Reliable prediction models of subarachnoid hemorrhage (SAH) outcomes are needed for decision-making of the treatment. SAFIRE score using only four variables is a good prediction scoring system. However, making such prediction models needs a large number of samples and time-consuming statistical analysis. Deep learning (DL), one of the artificial intelligence, is attractive, but there were no reports on prediction models for SAH outcomes using DL. We herein made a prediction model using DL software, Prediction One (Sony Network Communications Inc., Tokyo, Japan) and compared it to SAFIRE score. METHODS: We used 153 consecutive aneurysmal SAH patients data in our hospital between 2012 and 2019. Modified Rankin Scale (mRS) 0–3 at 6 months was defined as a favorable outcome. We randomly divided them into 102 patients training dataset and 51 patients external validation dataset. Prediction one made the prediction model using the training dataset with internal cross-validation. We used both the created model and SAFIRE score to predict the outcomes using the external validation set. The areas under the curve (AUCs) were compared. RESULTS: The model made by Prediction One using 28 variables had AUC of 0.848, and its AUC for the validation dataset was 0.953 (95%CI 0.900–1.000). AUCs calculated using SAFIRE score were 0.875 for the training dataset and 0.960 for the validation dataset, respectively. CONCLUSION: We easily and quickly made prediction models using Prediction One, even with a small single-center dataset. The accuracy of the model was not so inferior to those of previous statistically calculated prediction models.
Search related documents:
Co phrase search for related documents- logistic regression and low density: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27
- logistic regression and low density lipoprotein cholesterol: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
- logistic regression and lymphocyte albumin: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30
- logistic regression and lymphocyte count: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
- logistic regression and machine enable: 1, 2
- logistic regression and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74
- logistic regression and machine learning categorize: 1, 2
- logistic regression and machine learning model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48
- low density and lymphocyte albumin: 1, 2, 3
- low density and lymphocyte count: 1, 2, 3, 4, 5, 6, 7, 8
- low density and machine learning: 1, 2
- low density lipoprotein cholesterol and lymphocyte albumin: 1
- low density lipoprotein cholesterol and lymphocyte count: 1, 2, 3, 4, 5, 6
- lymphocyte albumin and machine learning: 1, 2, 3
- lymphocyte count and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18
- lymphocyte count and machine learning model: 1
Co phrase search for related documents, hyperlinks ordered by date