Selected article for: "acid pathway and active site"

Author: Srivastava, Neha; Garg, Prekshi; Srivastava, Prachi; Seth, Prahlad Kishore
Title: A molecular dynamics simulation study of the ACE2 receptor with screened natural inhibitors to identify novel drug candidate against COVID-19
  • Cord-id: taim18hw
  • Document date: 2021_4_23
  • ID: taim18hw
    Snippet: BACKGROUND & OBJECTIVES: The massive outbreak of Novel Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) has turned out to be a serious global health issue worldwide. Currently, no drugs or vaccines are available for the treatment of COVID-19. The current computational study was attempted to identify a novel therapeutic inhibitor against novel SARS-CoV-2 using in silico drug discovery pipeline. METHODS: In the present study, the human angiotensin-converting enzyme 2 (ACE2) receptor was
    Document: BACKGROUND & OBJECTIVES: The massive outbreak of Novel Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) has turned out to be a serious global health issue worldwide. Currently, no drugs or vaccines are available for the treatment of COVID-19. The current computational study was attempted to identify a novel therapeutic inhibitor against novel SARS-CoV-2 using in silico drug discovery pipeline. METHODS: In the present study, the human angiotensin-converting enzyme 2 (ACE2) receptor was the target for the designing of drugs against the deadly virus. The 3D structure of the receptor was modeled & validated using a Swiss-model, Procheck & Errat server. A molecular docking study was performed between a group of natural & synthetic compounds having proven anti-viral activity with ACE2 receptor using Autodock tool 1.5.6. The molecular dynamics simulation study was performed using Desmond v 12 to evaluate the stability and interaction of the ACE2 receptor with a ligand. RESULTS: Based on the lowest binding energy, confirmation, and H-bond interaction, cinnamic acid (−5.20 kcal/mol), thymoquinone (−4.71 kcal/mol), and andrographolide (Kalmegh) (−4.00 kcal/mol) were screened out showing strong binding affinity to the active site of ACE2 receptor. MD simulations suggest that cinnamic acid, thymoquinone, and andrographolide (Kalmegh) could efficiently activate the biological pathway without changing the conformation in the binding site of the ACE2 receptor. The bioactivity and drug-likeness properties of compounds show their better pharmacological property and safer to use. INTERPRETATION & CONCLUSIONS: The study concludes the high potential of cinnamic acid, thymoquinone, and andrographolide against the SARS-CoV-2 ACE2 receptor protein. Thus, the molecular docking and MD simulation study will aid in understanding the molecular interaction between ligand and receptor binding site, thereby leading to novel therapeutic intervention.

    Search related documents:
    Co phrase search for related documents
    • accession id and acute respiratory syndrome coronavirus: 1, 2
    • accessory structural and active site: 1, 2
    • accessory structural and acute respiratory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • accessory structural and acute respiratory syndrome coronavirus: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • acid complex and active peptide: 1
    • acid complex and active site: 1, 2, 3, 4, 5, 6
    • acid complex and acute respiratory: 1, 2, 3, 4, 5, 6, 7, 8, 9
    • acid complex and acute respiratory syndrome coronavirus: 1, 2, 3, 4, 5, 6
    • acid complex and low binding: 1
    • active constituent and acute respiratory: 1, 2
    • active constituent and acute respiratory syndrome coronavirus: 1, 2
    • active peptide and acute respiratory: 1, 2, 3, 4
    • active peptide and acute respiratory syndrome coronavirus: 1, 2, 3
    • active role and acute respiratory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • active role and acute respiratory syndrome coronavirus: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21
    • active role and low binding: 1
    • active role and low binding energy: 1
    • active site and low binding: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
    • active site and low binding energy: 1, 2, 3, 4, 5, 6