Author: Magro, Bianca; Zuccaro, Valentina; Novelli, Luca; Zileri, Lorenzo; Celsa, Ciro; Raimondi, Federico; Gori, Mauro; Cammà , Giulia; Battaglia, Salvatore; Genova, Vincenzo Giuseppe; Paris, Laura; Tacelli, Matteo; Mancarella, Francesco Antonio; Enea, Marco; Attanasio, Massimo; Senni, Michele; Di Marco, Fabiano; Lorini, Luca Ferdinando; Fagiuoli, Stefano; Bruno, Raffaele; Cammà , Calogero; Gasbarrini, Antonio
Title: Predicting in-hospital mortality from Coronavirus Disease 2019: A simple validated app for clinical use Cord-id: 62msjcqi Document date: 2021_1_14
ID: 62msjcqi
Snippet: BACKGROUNDS: Validated tools for predicting individual in-hospital mortality of COVID-19 are lacking. We aimed to develop and to validate a simple clinical prediction rule for early identification of in-hospital mortality of patients with COVID-19. METHODS AND FINDINGS: We enrolled 2191 consecutive hospitalized patients with COVID-19 from three Italian dedicated units (derivation cohort: 1810 consecutive patients from Bergamo and Pavia units; validation cohort: 381 consecutive patients from Rome
Document: BACKGROUNDS: Validated tools for predicting individual in-hospital mortality of COVID-19 are lacking. We aimed to develop and to validate a simple clinical prediction rule for early identification of in-hospital mortality of patients with COVID-19. METHODS AND FINDINGS: We enrolled 2191 consecutive hospitalized patients with COVID-19 from three Italian dedicated units (derivation cohort: 1810 consecutive patients from Bergamo and Pavia units; validation cohort: 381 consecutive patients from Rome unit). The outcome was in-hospital mortality. Fine and Gray competing risks multivariate model (with discharge as a competing event) was used to develop a prediction rule for in-hospital mortality. Discrimination and calibration were assessed by the area under the receiver operating characteristic curve (AUC) and by Brier score in both the derivation and validation cohorts. Seven variables were independent risk factors for in-hospital mortality: age (Hazard Ratio [HR] 1.08, 95% Confidence Interval [CI] 1.07–1.09), male sex (HR 1.62, 95%CI 1.30–2.00), duration of symptoms before hospital admission <10 days (HR 1.72, 95%CI 1.39–2.12), diabetes (HR 1.21, 95%CI 1.02–1.45), coronary heart disease (HR 1.40 95% CI 1.09–1.80), chronic liver disease (HR 1.78, 95%CI 1.16–2.72), and lactate dehydrogenase levels at admission (HR 1.0003, 95%CI 1.0002–1.0005). The AUC was 0.822 (95%CI 0.722–0.922) in the derivation cohort and 0.820 (95%CI 0.724–0.920) in the validation cohort with good calibration. The prediction rule is freely available as a web-app (COVID-CALC: https://sites.google.com/community.unipa.it/covid-19riskpredictions/c19-rp). CONCLUSIONS: A validated simple clinical prediction rule can promptly and accurately assess the risk for in-hospital mortality, improving triage and the management of patients with COVID-19.
Search related documents:
Co phrase search for related documents- acute outbreak and liver disease: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
- acute outbreak and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute outbreak and logistic regression model: 1, 2
- acute outbreak and lombardy bergamo: 1
- acute outbreak and lombardy pavia: 1
- acute outbreak and lopinavir ritonavir: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
- additional variable and liver disease: 1
- additional variable and logistic regression: 1, 2
- liver disease and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- liver disease and logistic regression model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
- liver disease and lopinavir ritonavir: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18
- logistic regression and long duration: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
- logistic regression and lopinavir ritonavir: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- logistic regression model and long duration: 1, 2, 3
- logistic regression model and lopinavir ritonavir: 1, 2, 3, 4, 5, 6
- lombardy bergamo and lopinavir ritonavir: 1
Co phrase search for related documents, hyperlinks ordered by date