Author: Song, Jialu; Xie, Hujin; Gao, Bingbing; Zhong, Yongmin; Gu, Chengfan; Choi, Kup-Sze
Title: Maximum likelihood-based extended Kalman filter for COVID-19 prediction Cord-id: qj0wqcht Document date: 2021_4_2
ID: qj0wqcht
Snippet: Prediction of COVID-19 spread plays a significant role in the epidemiology study and government battles against the epidemic. However, the existing studies on COVID-19 prediction are dominated by constant model parameters, unable to reflect the actual situation of COVID-19 spread. This paper presents a new method for dynamic prediction of COVID-19 spread by considering time-dependent model parameters. This method discretises the susceptible-exposed-infected-recovered-dead (SEIRD) epidemiological
Document: Prediction of COVID-19 spread plays a significant role in the epidemiology study and government battles against the epidemic. However, the existing studies on COVID-19 prediction are dominated by constant model parameters, unable to reflect the actual situation of COVID-19 spread. This paper presents a new method for dynamic prediction of COVID-19 spread by considering time-dependent model parameters. This method discretises the susceptible-exposed-infected-recovered-dead (SEIRD) epidemiological model in time domain to construct the nonlinear state-space equation for dynamic estimation of COVID-19 spread. A maximum likelihood estimation theory is established to online estimate time-dependent model parameters. Subsequently, an extended Kalman filter is developed to estimate dynamic COVID-19 spread based on the online estimated model parameters. The proposed method is applied to simulate and analyse the COVID-19 pandemics in China and the United States based on daily reported cases, demonstrating its efficacy in modelling and prediction of COVID-19 spread.
Search related documents:
Co phrase search for related documents, hyperlinks ordered by date