Selected article for: "human human and new approach"

Author: Barzon, Luisa; Lavezzo, Enrico; Militello, Valentina; Toppo, Stefano; Palù, Giorgio
Title: Applications of Next-Generation Sequencing Technologies to Diagnostic Virology
  • Document date: 2011_11_14
  • ID: 01nuj0lk_19
    Snippet: Computational subtraction analysis of data obtained using conventional shotgun sequencing methods has been used to identify viral sequences (e.g., HBV, HCMV, human papillomaviruses 18 and 16, HHV8, HCV, EBV and human spumavirus) in EST libraries derived from normal and cancerous tissues [40] and in post-transplant lymphoproliferative disorder tissue [41] . In these studies, computational subtraction analysis relied on sequence data gathered for o.....
    Document: Computational subtraction analysis of data obtained using conventional shotgun sequencing methods has been used to identify viral sequences (e.g., HBV, HCMV, human papillomaviruses 18 and 16, HHV8, HCV, EBV and human spumavirus) in EST libraries derived from normal and cancerous tissues [40] and in post-transplant lymphoproliferative disorder tissue [41] . In these studies, computational subtraction analysis relied on sequence data gathered for other purposes as the yield of viral sequences was very low due to the predominance of human sequences. However, exploiting the great amount of sequencing data achievable by NGS methods, computational subtraction analysis could become a method of choice for viral discovery. This approach has been used for the discovery of a new polyomavirus associated with most cases of Merkel cell carcinoma (MCC) [42] . MCC is a rare and aggressive human skin cancer that typically affects elderly and immunosuppressed individuals, a feature which was suggestive of an infectious origin. RNA was purified from MCC samples and analyzed by 454 pyrosequencing. Digital transcriptome subtraction of all human sequences led to the detection of a fusion transcript between a human receptor tyrosine phosphatase and a Large T antigen sequence related to murine polyomaviruses. This sequence was used as starting point for whole genome sequencing and characterization of this previously unknown polyomavirus that was called Merkel cell polyomavirus (MCPyV). The presence of the virus in 80% MCC tissues but only in about 10% of control tissues from various body sites, including the skin, and the demonstration that, in MCPyV-positive MCCs, viral DNA was integrated within the tumor genome in a clonal pattern, strongly suggested the etiological role of the virus in the pathogenesis of MCC [42] .

    Search related documents:
    Co phrase search for related documents
    • cell carcinoma and clonal pattern: 1
    • cell carcinoma and control tissue: 1
    • cell carcinoma and etiological role: 1
    • cell carcinoma and genome sequencing: 1, 2, 3
    • characterization genome sequencing and genome sequencing: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18
    • clonal pattern and control tissue: 1
    • control tissue and genome sequencing: 1, 2