Selected article for: "primary rate and secondary transmission rate"

Author: Neri, Franco M.; Cook, Alex R.; Gibson, Gavin J.; Gottwald, Tim R.; Gilligan, Christopher A.
Title: Bayesian Analysis for Inference of an Emerging Epidemic: Citrus Canker in Urban Landscapes
  • Document date: 2014_4_24
  • ID: 01yc7lzk_21
    Snippet: in which d is the Euclidean distance between a given pair of infected and susceptible trees, measured in kilometres. Both kernels in Equations 3 are isotropic, of the form K d,a ð Þ~1=(2pd)|f d; a ð Þ, where f d; a ð Þ is a one-dimensional kernel defined on the positive real axis (for the kernels in Equations 3, f d; a ð Þ is a negative exponential and half-Cauchy kernel, respectively). A cutoff at short distances was introduced (Text S1,.....
    Document: in which d is the Euclidean distance between a given pair of infected and susceptible trees, measured in kilometres. Both kernels in Equations 3 are isotropic, of the form K d,a ð Þ~1=(2pd)|f d; a ð Þ, where f d; a ð Þ is a one-dimensional kernel defined on the positive real axis (for the kernels in Equations 3, f d; a ð Þ is a negative exponential and half-Cauchy kernel, respectively). A cutoff at short distances was introduced (Text S1, Equations S5) to control kernel divergence. We remark that, owing to the kernel normalisation chosen in Equations 3, the secondary transmission rate b is measured in days 21 km 2 , while the primary transmission rate e is measured in days 21 (see Text S1 for a discussion of this point).

    Search related documents:
    Co phrase search for related documents
    • primary transmission rate and secondary transmission rate: 1
    • primary transmission rate and transmission rate: 1, 2, 3
    • secondary transmission rate and transmission rate: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30
    • short distance and transmission rate: 1