Author: Neri, Franco M.; Cook, Alex R.; Gibson, Gavin J.; Gottwald, Tim R.; Gilligan, Christopher A.
Title: Bayesian Analysis for Inference of an Emerging Epidemic: Citrus Canker in Urban Landscapes Document date: 2014_4_24
ID: 01yc7lzk_32
Snippet: Two additional models were fitted to the entire dataset. Rather than representing scenarios where observation is initiated at different times, as for the sliding-window estimates, these models, like model M 0 , are post facto analyses of the epidemic. In a four parameter model, henceforth denoted with M V (cf. Table 1) , a and e are constant over time (as in model M 0 ), while the secondary transmission rate is a continuous, linearly decreasing T.....
Document: Two additional models were fitted to the entire dataset. Rather than representing scenarios where observation is initiated at different times, as for the sliding-window estimates, these models, like model M 0 , are post facto analyses of the epidemic. In a four parameter model, henceforth denoted with M V (cf. Table 1) , a and e are constant over time (as in model M 0 ), while the secondary transmission rate is a continuous, linearly decreasing Table 1 ) has heterogeneous time scales for the parameters, with a constant for the whole dataset and rates b and e changing by time intervals. Essentially, this approach implies: choosing a time resolution (e.g., DT = six months) for the rates b t and e t ; partitioning the whole epidemic time span into regular intervals (e.g., for DT = 6 months, four intervals: 0-6, 6-12, 12-18, and 18-24 months); fitting different b t and e t to each time interval (in the same example, four secondary rates b t and four primary rates e t ), but a single a to all the intervals.
Search related documents:
Co phrase search for related documents- additional model and epidemic time: 1, 2, 3, 4, 5
- additional model and parameter model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
- additional model and time interval: 1
- additional model and transmission rate: 1, 2, 3, 4, 5, 6, 7, 8
- different time and DT month: 1
- different time and entire dataset: 1
- different time and epidemic time: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59
- different time and heterogeneous time: 1, 2, 3, 4, 5, 6, 7, 8, 9
- different time and parameter model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
- different time and primary rate: 1, 2, 3, 4
- different time and secondary rate: 1, 2, 3, 4
- different time and time interval: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49
- different time and time resolution: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22
- different time and transmission rate: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18
- DT month and entire dataset: 1
- DT month and heterogeneous time: 1
- DT month and parameter model: 1
- DT month and primary rate: 1
- DT month and time resolution: 1, 2
Co phrase search for related documents, hyperlinks ordered by date