Selected article for: "different model and primary infection model"

Author: Neri, Franco M.; Cook, Alex R.; Gibson, Gavin J.; Gottwald, Tim R.; Gilligan, Christopher A.
Title: Bayesian Analysis for Inference of an Emerging Epidemic: Citrus Canker in Urban Landscapes
  • Document date: 2014_4_24
  • ID: 01yc7lzk_53
    Snippet: The robustness of sliding-window estimates for a to different estimation periods motivates the following assumption: environmental fluctuations affect the model only through primary and secondary infection rates, while the short-range dispersal scale a remains constant at each census site all along the epidemic. We integrated this assumption into our estimations, and fitted to the entire dataset model M DT a , with heterogeneous time scales for t.....
    Document: The robustness of sliding-window estimates for a to different estimation periods motivates the following assumption: environmental fluctuations affect the model only through primary and secondary infection rates, while the short-range dispersal scale a remains constant at each census site all along the epidemic. We integrated this assumption into our estimations, and fitted to the entire dataset model M DT a , with heterogeneous time scales for the parameters (cf. model Table 1 and Methods), where a was kept constant for the whole epidemic history, while the rates b t and e t changed with frequency DT. All the analyses from now on concern model M DT a , and focus on two different time intervals for the infection rates, obeying two different purposes. The first, DT = 6 months, is intended to capture the main temporal trend in rates; the second, DT = 1 month (corresponding to the highest possible resolution given data censoring), is used to analyse short-time fluctuations.

    Search related documents:
    Co phrase search for related documents
    • dataset model and short time: 1, 2, 3, 4
    • different estimation and short time: 1
    • different purpose and short time: 1, 2, 3, 4
    • dispersal scale and short time: 1
    • epidemic history and short time: 1
    • heterogeneous time and short time: 1, 2, 3, 4
    • infection rate and short time: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22
    • model affect and short time: 1
    • possible resolution and short time: 1