Selected article for: "drug inhibition and functional validation"

Author: Zheng, Jie; Tan, Boon Huan; Sugrue, Richard; Tang, Kai
Title: Current Approaches on Viral Infection: Proteomics and Functional Validations
  • Document date: 2012_11_16
  • ID: 1grbdlib_19
    Snippet: Compared with siRNA knockdown, shRNA and miRNA mediated gene silencing were less reported as functional validation strategies to examine proteomic data. In one study, cellular c-Cbl was known to play a key role in macropinocytosis for entry of kaposi's sarcoma-associated herpesvirus (KSHV). Valiya Veettil et al. (2010) utilized MS to analyze the immunoprecipitation (IP) of c-Cbl and identified a novel interacting protein, myosin IIA. shRNA mediat.....
    Document: Compared with siRNA knockdown, shRNA and miRNA mediated gene silencing were less reported as functional validation strategies to examine proteomic data. In one study, cellular c-Cbl was known to play a key role in macropinocytosis for entry of kaposi's sarcoma-associated herpesvirus (KSHV). Valiya Veettil et al. (2010) utilized MS to analyze the immunoprecipitation (IP) of c-Cbl and identified a novel interacting protein, myosin IIA. shRNA mediated knockdown of c-Cbl was then performed and the binding between c-Cbl and myosin IIA was abolished. Overall, these gene silencing studies showed that effective silencing of gene expression has a profound influence to functional virology studies in conjunction with proteomic techniques. What is more, it could provide a more rigorously demonstrated result at the functional level when siRNA-mediated knockdown is comprehensively combined with other approaches, such as immunofluorescence imaging, molecular cloning, RT-PCR, drug inhibition of secretory pathways.

    Search related documents:
    Co phrase search for related documents
    • drug inhibition and key role: 1
    • drug inhibition and molecular cloning: 1, 2, 3
    • drug inhibition and secretory pathway: 1, 2, 3
    • drug inhibition and secretory pathway drug inhibition: 1, 2
    • effective silencing and gene expression: 1, 2, 3