Author: Duval, Xavier; van der Werf, Sylvie; Blanchon, Thierry; Mosnier, Anne; Bouscambert-Duchamp, Maude; Tibi, Annick; Enouf, Vincent; Charlois-Ou, Cécile; Vincent, Corine; Andreoletti, Laurent; Tubach, Florence; Lina, Bruno; Mentré, France; Leport, Catherine
Title: Efficacy of Oseltamivir-Zanamivir Combination Compared to Each Monotherapy for Seasonal Influenza: A Randomized Placebo-Controlled Trial Document date: 2010_11_2
ID: 19sejitq_31_0
Snippet: Analysis of the different antiviral regimens' efficacy was based on a primary virological endpoint, which we hypothesized could be a sensitive and a more specific indicator than a primary clinical endpoint. Clinical endpoints, used as primary endpoints in previous studies, were used as secondary endpoints in the present study [1, 5] . Clinical endpoints, which are based on a global assessment of both general (mainly immunologically linked) and re.....
Document: Analysis of the different antiviral regimens' efficacy was based on a primary virological endpoint, which we hypothesized could be a sensitive and a more specific indicator than a primary clinical endpoint. Clinical endpoints, used as primary endpoints in previous studies, were used as secondary endpoints in the present study [1, 5] . Clinical endpoints, which are based on a global assessment of both general (mainly immunologically linked) and respiratory (mainly virologically linked) symptoms, are probably not the best way to monitor the virological effect of treatment, because clinical symptoms are not exclusive to influenza. We thus considered that a difference in viral shedding rate would be the best indicator of the virological effects of combined therapy, and consequently a valuable surrogate. Our initial hypothesis was that the combination of two antivirals may reduce the rate of resistant virus emergence (for a naturally susceptible pandemic virus and a nonimmune population). In addition, we hypothesized that for cases of infection with susceptible seasonal influenza viruses, this could not be easily shown, owing first to the rarity of this phenomenon in adults, and second, to the necessity of monitoring virus excretion for several days, whereas for cases of influenza due to H1N1 viruses, which are naturally resistant to oseltamivir, the question was not relevant. Given the viral shedding kinetics in patients with seasonal influenza receiving neuraminidase inhibitors, the day 2 virological endpoint was considered to be best suited to quantify virological effects. The 200 cgeq/l threshold was chosen, as it was the best compromise in terms of specificity and sensitivity as compared to standard culture. Of note, the same trends were observed when a 100 cgeq/l or a 1,000 cgeq/ml cut-off was used to define virological success (Table S2 ). Furthermore, the study was designed to be statistically two-sided to take into account the possibility that the combination would perform worse than either drug alone because of the theoretical concern of antagonism at the receptor level. The oseltamivir-zanamivir combination seemed, both virologically and clinically, significantly less effective than the oseltamivir monotherapy. This result seems robust because (1) it was found using a double-blind placebo methodology, (2) there was overall concordance both among virological endpoints, and between virological and clinical endpoints, (3) it was confirmed over the three different subgroups of subjects included in the global population (541 enrolled patients, 447 influenza A-infected patients, 382 influenza A-infected and fully compliant patients). This lower clinical and virological response to the combination may suggest a negative effect of zanamivir on oseltamivir, as in the absence of interactions the effect of the combination should at least be additive [15] . A negative interaction at the level of binding at the catalytic pocket of the neuraminidase is an explanation that should be further investigated in vitro for both seasonal H3N2 and H1N1 viruses. Recent in vitro data showing the lack of synergy between oseltamivir and zanamivir, and some antagonism at higher concentrations of zanamivir on pandemic H1N1 2009 virus, are in agreement with this hypothesis [16] . Furthermore, contrary to oseltamivir, which upon digestive absorption needs to be metabolized, thus delaying arrival of the active drug at the infection site (t max = 4 h), inhaled zan
Search related documents:
Co phrase search for related documents- active drug and combination effect: 1
- antiviral combination and clinical endpoint: 1
- antiviral combination and combination effect: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
- antiviral combination and combined therapy: 1, 2
Co phrase search for related documents, hyperlinks ordered by date