Selected article for: "bat sera and canine equine"

Author: Drexler, Jan Felix; Corman, Victor Max; Müller, Marcel Alexander; Lukashev, Alexander N.; Gmyl, Anatoly; Coutard, Bruno; Adam, Alexander; Ritz, Daniel; Leijten, Lonneke M.; van Riel, Debby; Kallies, Rene; Klose, Stefan M.; Gloza-Rausch, Florian; Binger, Tabea; Annan, Augustina; Adu-Sarkodie, Yaw; Oppong, Samuel; Bourgarel, Mathieu; Rupp, Daniel; Hoffmann, Bernd; Schlegel, Mathias; Kümmerer, Beate M.; Krüger, Detlev H.; Schmidt-Chanasit, Jonas; Setién, Alvaro Aguilar; Cottontail, Veronika M.; Hemachudha, Thiravat; Wacharapluesadee, Supaporn; Osterrieder, Klaus; Bartenschlager, Ralf; Matthee, Sonja; Beer, Martin; Kuiken, Thijs; Reusken, Chantal; Leroy, Eric M.; Ulrich, Rainer G.; Drosten, Christian
Title: Evidence for Novel Hepaciviruses in Rodents
  • Document date: 2013_6_20
  • ID: 1v353uij_43
    Snippet: In a Bayesian phylogeny of the full polyprotein, the rodent hepaciviruses and GBV-B were monophyletic, forming a sister Figure 2 . Serological reactivity of bat and rodent sera with HCV antigens. A. Indirect immunofluorescence assay using bat serum. Typical reactivity of a positive E. helvum serum from Ghana (GH69) diluted 1:50 in sample buffer with HuH7 cells infected with HCV strain JHF1 is shown on the left. Arrows point at specific staining o.....
    Document: In a Bayesian phylogeny of the full polyprotein, the rodent hepaciviruses and GBV-B were monophyletic, forming a sister Figure 2 . Serological reactivity of bat and rodent sera with HCV antigens. A. Indirect immunofluorescence assay using bat serum. Typical reactivity of a positive E. helvum serum from Ghana (GH69) diluted 1:50 in sample buffer with HuH7 cells infected with HCV strain JHF1 is shown on the left. Arrows point at specific staining of cytoplasmatic antigen. On the right, lack of reactivity of GH69 with uninfected HuH7 cells is shown. IFA was done as described in the methods section. Cell nuclei were stained with DAPI. Scale bar represents 100 mm. B. HCV western blot reactivity patterns with bat sera. Representative reaction patterns of 11 bat sera with the HCV recomblot assay are shown. Sample 1, human positive control serum. Samples 2 to 12 correspond to the following bat species: 2-7, Eidolon helvum; 8-12, Rousettus aegyptiacus. C. HCV western blot reactivity patterns with rodent sera. Representative reaction patterns of 5 rodent sera with the HCV recomline are shown. Sample 1, human positive control serum. Samples 2 to 6 correspond to the following rodent species: 2, Rattus norvegicus; 3, Apodemus sylvaticus; 4, Myocastor coypus; 5, Rattus norvegicus; 6, Myodes glareolus. Blot antigens are indicated at the left of each row. Below each line in B and C, the result of a tentative evaluation is given following the manufacturer's criteria defined for human sera, as described below Table 1 clade to the canine/equine hepaciviruses and HCV ( Figure 5) . The rodent-associated clade had very long intermediary branches and originated close to the root of all viruses. The full genome tree had a better phylogenetic resolution compared to the partial NS3 phylogeny, but still contained topological uncertainties in some deep nodes leading to rodent-associated taxa (Supplementary Figure S1) .

    Search related documents:
    Co phrase search for related documents
    • Apodemus sylvaticus and bat serum: 1
    • Apodemus sylvaticus and Eidolon helvum: 1
    • bat sera and canine equine: 1
    • bat sera and control serum: 1
    • bat sera and Eidolon helvum: 1, 2
    • bat serum and control serum: 1, 2
    • bat serum and Eidolon helvum: 1, 2
    • bayesian phylogeny and canine equine: 1, 2, 3