Selected article for: "acid nucleic and long short"

Author: Ye, Fuqiang; Han, Yifang; Zhu, Juanjuan; Li, Peng; Zhang, Qi; Lin, Yanfeng; Wang, Taiwu; Lv, Heng; Wang, Changjun; Wang, Chunhui; Zhang, Jinhai
Title: First Identification of Human Adenovirus Subtype 21a in China With MinION and Illumina Sequencers
  • Document date: 2020_4_7
  • ID: 18b2foud_3
    Snippet: Nanopore sequencing technology was made public by Oxford Nanopore Technologies (ONT) in 2014. When DNA or RNA module translocates through a nanopore, an ionic current will be produced from a constant voltage bias, and then a change in the ionic current can be observed (van Dijk et al., 2018) . Nucleic acid bases can then be basecalled by built-in or the third-party basecallers. When compared to the next-generation sequencing (NGS) methods, nanopo.....
    Document: Nanopore sequencing technology was made public by Oxford Nanopore Technologies (ONT) in 2014. When DNA or RNA module translocates through a nanopore, an ionic current will be produced from a constant voltage bias, and then a change in the ionic current can be observed (van Dijk et al., 2018) . Nucleic acid bases can then be basecalled by built-in or the third-party basecallers. When compared to the next-generation sequencing (NGS) methods, nanopore sequencing technology has advantages such as real time, long reads, short turnaround time, and simple sample preparation procedures (van Dijk et al., 2018; Ameur et al., 2019) . In particular, the ONT platform MinION, also characterized by portability and low cost in addition to the above advantages, can well handle rapid pathogen detection in the field (McIntyre et al., 2016; Castro-Wallace et al., 2017; Johnson et al., 2017; Edwards et al., 2019) . MinION has been widely employed in pathogen identification from human clinical samples to identify Chikungunya virus, hepatitis C virus, and enterovirus Imai et al., 2018; Xu et al., 2018) . It has also played a vital role in rapid pathogen confirmation in recent epidemic outbreaks caused by Ebola virus (Quick et al., 2016) , Zika virus (Faria et al., 2017; Quick et al., 2017) , yellow fever virus (Faria et al., 2018) , and Lassa virus (Kafetzopoulou et al., 2019) , highlighting the value of MinION in microbial investigation and disease control.

    Search related documents:
    Co phrase search for related documents