Author: Okeke, Malachy I.; Okoli, Arinze S.; Diaz, Diana; Offor, Collins; Oludotun, Taiwo G.; Tryland, Morten; Bøhn, Thomas; Moens, Ugo
Title: Hazard Characterization of Modified Vaccinia Virus Ankara Vector: What Are the Knowledge Gaps? Document date: 2017_10_29
ID: 175igdfk_31
Snippet: Studies on viral and host factors that modulate transgene stability are miniscule. With few exceptions, the effect of transgene insertion site [105] [106] [107] [108] , promoter choice [104] , promoter spacer length [109] , expression levels of the transgene [110] , timing of transgene expression [104] , sequence/structure of the transgene/flanking region [111] and host cell used for virus amplification [96] on transgene stability are poorly unde.....
Document: Studies on viral and host factors that modulate transgene stability are miniscule. With few exceptions, the effect of transgene insertion site [105] [106] [107] [108] , promoter choice [104] , promoter spacer length [109] , expression levels of the transgene [110] , timing of transgene expression [104] , sequence/structure of the transgene/flanking region [111] and host cell used for virus amplification [96] on transgene stability are poorly understood. Elucidating the virus and host determinants of transgene instability is essential as such knowledge will be deployed in designing transgenic MVA vaccines where the probability of transgene instability is extremely low or negligible. The few studies on transgene stability were done in established cell lines. To our knowledge, there is no report where transgene instability and the underlying mechanisms have been investigated in vivo. This is particularly relevant in immuno-compromised infection models. Immuno-compromised humans, domesticated animals and wildlife are population subsets that may be exposed to recombinant MVA vaccines, thus the stability of the transgene in immuno-compromised animal models should be investigated and data obtained should guide the ERA of recombinant MVA.
Search related documents:
Co phrase search for related documents- animal model and expression level: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18
- animal model and host cell: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
- animal model and host virus: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- animal model and infection model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- animal model and MVA vaccine: 1, 2
- cell line and establish cell line: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
- cell line and expression level: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- cell line and host cell: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- cell line and host virus: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- cell line and host virus determinant: 1
- cell line and infection model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- cell line and insertion site: 1, 2, 3, 4, 5
- cell line and MVA vaccine: 1, 2
- establish cell line and host cell: 1
- establish cell line and host virus: 1
- expression level and host viral factor: 1, 2
- expression level and host virus: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- expression level and infection model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
- expression level and insertion site: 1, 2
Co phrase search for related documents, hyperlinks ordered by date