Selected article for: "amino acid and gene conversion"

Author: Ye, Fuqiang; Han, Yifang; Zhu, Juanjuan; Li, Peng; Zhang, Qi; Lin, Yanfeng; Wang, Taiwu; Lv, Heng; Wang, Changjun; Wang, Chunhui; Zhang, Jinhai
Title: First Identification of Human Adenovirus Subtype 21a in China With MinION and Illumina Sequencers
  • Document date: 2020_4_7
  • ID: 18b2foud_44
    Snippet: Multiple alignment coupled with polymorphism analysis was further conducted. A G → T conversion occurred in the hypothetical protein (GenBank accession no. APT35313.1) encoded by the E2B gene, leading to a conversion of proline to threonine in the deduced amino acid sequence. When comparing the promoter region from position 10,562 to 10,597 in the current genome with other HAdV21s, we found two poly(T) regions that were highly varying in the nu.....
    Document: Multiple alignment coupled with polymorphism analysis was further conducted. A G → T conversion occurred in the hypothetical protein (GenBank accession no. APT35313.1) encoded by the E2B gene, leading to a conversion of proline to threonine in the deduced amino acid sequence. When comparing the promoter region from position 10,562 to 10,597 in the current genome with other HAdV21s, we found two poly(T) regions that were highly varying in the number of T bases (the first poly(T) region: 13 Ts in current genome vs. 9-16 Ts in other references; the second poly(T) region: 4 Ts in current genome vs. 4-5 Ts in other references). A similar variation in poly(T) regions was also observed in the upstream region of CDS for a 52 kDa protein encoded in the L1 gene. One insertion of 6 bp FIGURE 2 | The read depth across the current genome by two sequencing platforms.

    Search related documents:
    Co phrase search for related documents