Author: Suddala, Krishna C.; Lee, Christine C.; Meraner, Paul; Marin, Mariana; Markosyan, Ruben M.; Desai, Tanay M.; Cohen, Fredric S.; Brass, Abraham L.; Melikyan, Gregory B.
Title: Interferon-induced transmembrane protein 3 blocks fusion of sensitive but not resistant viruses by partitioning into virus-carrying endosomes Document date: 2019_1_14
ID: 15wxk8lt_46
Snippet: We have previously proposed an alternative mechanism of IFITM3-mediated virus restriction referred to as a "fusion decoy" model [30] . According to this model, viruses are redirected into multivesicular endosomes where unrestricted fusion with intraluminal vesicles, as opposed to fusion with the limiting membrane of an endosome, does not allow viral capsid release into the cytoplasm. The single virus content (mCherry) release assay would not dete.....
Document: We have previously proposed an alternative mechanism of IFITM3-mediated virus restriction referred to as a "fusion decoy" model [30] . According to this model, viruses are redirected into multivesicular endosomes where unrestricted fusion with intraluminal vesicles, as opposed to fusion with the limiting membrane of an endosome, does not allow viral capsid release into the cytoplasm. The single virus content (mCherry) release assay would not detect IAVpp fusion with intraluminal vesicles, as the content marker will remain contained within the same endosome. The similar extent of lipid dye dequenching upon single IAV fusion with control and IFITM3-positive endosomes (Fig 2) appears compatible with virus hemifusion to the limiting membrane, but the slower dequenching rate in IFITM3 compartments could be due to multiple rounds of hemifusion with intraluminal vesicles. Therefore, additional experiments are needed to test the validity of a "fusion decoy" model.
Search related documents:
Co phrase search for related documents- control IAV fusion and IAV fusion: 1, 2
Co phrase search for related documents, hyperlinks ordered by date