Author: Pei, Sen; Morone, Flaviano; Liljeros, Fredrik; Makse, Hernán; Shaman, Jeffrey L
Title: Inference and control of the nosocomial transmission of methicillin-resistant Staphylococcus aureus Document date: 2018_12_18
ID: 0dut9fjn_46
Snippet: An alternative method to infer posterior parameters is to use Approximate Bayesian computation (ABC) (Beaumont et al., 2002) . ABC-based methods employ numerical simulations to approximate the likelihood function, in which the simulated samples are compared with the observed data. In a typical ABC rejection algorithm, large numbers of parameters are sampled from the prior distribution. For each set of parameters, the distance between simulated sa.....
Document: An alternative method to infer posterior parameters is to use Approximate Bayesian computation (ABC) (Beaumont et al., 2002) . ABC-based methods employ numerical simulations to approximate the likelihood function, in which the simulated samples are compared with the observed data. In a typical ABC rejection algorithm, large numbers of parameters are sampled from the prior distribution. For each set of parameters, the distance between simulated samples (generated using the parameters) and observed data is calculated. Parameters resulting in a distance larger than a certain tolerance are rejected, and the retained parameters form the posterior distribution. ABC methods can fully explore the likelihood landscape in parameter space. However, it requires large numbers of simulations, which may be prohibitive for the large-scale agent-based models considered here. In addition, a good choice of the tolerance in the rejection algorithm is needed. The IF algorithm, instead, is applicable to computationally expensive agent-based models, but may become trapped in the local optimum of the posterior distribution. In practice, this problem can be alleviated by exploring a larger prior parameter space and setting a slower quenching speed, that is, a smaller discount factor a.
Search related documents:
Co phrase search for related documents- ABC approximate bayesian computation and bayesian computation: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
- ABC approximate bayesian computation and large number: 1
- ABC method and approximate bayesian computation: 1, 2, 3
- ABC method and bayesian computation: 1, 2, 3
- approximate bayesian computation and bayesian computation: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
Co phrase search for related documents, hyperlinks ordered by date