Author: Vijayan, Veena; Mohapatra, Adityanarayan; Uthaman, Saji; Park, In-Kyu
Title: Recent Advances in Nanovaccines Using Biomimetic Immunomodulatory Materials Document date: 2019_10_14
ID: 1d3xthbh_17
Snippet: Further, they mentioned that genetically fused antigens that have minimal interactions could be loaded onto vault NPs that had self-assembled through mixing with MVPs. In their work, they encapsulated an immunogenic protein termed the major outer membrane protein of Chlamydia muridarum into hollow vault nanocapsules. These hollow vault nanocapsules were modified to bind IgG for an enhanced immune response, to induce protective immunity at distant.....
Document: Further, they mentioned that genetically fused antigens that have minimal interactions could be loaded onto vault NPs that had self-assembled through mixing with MVPs. In their work, they encapsulated an immunogenic protein termed the major outer membrane protein of Chlamydia muridarum into hollow vault nanocapsules. These hollow vault nanocapsules were modified to bind IgG for an enhanced immune response, to induce protective immunity at distant mucosal surfaces [81] . Wahome et al. reported another self-assembling protein NP, an adjuvant-free immunogen [82] obtained by the self-assembly of a monomeric chain into an ordered oligomeric form as an antigen-presenting system that could be suitable for vaccines. This self-assembling protein NP was formed by incorporating the membrane-proximal external region (MPER) of HIV-1 gp41, which is identified as a target for a wide range of neutralizing antibodies, in the N-terminal pentamer, to produce an α-helical state of the 4E10 epitope, without causing structural changes in 2F5 epitopes. These self-assembled NPs showed enhanced membrane-proximal region-specific titers, owing to the presence of a repetitive antigen display of MPER even without any adjuvant, thus resulting in the formation of an adjuvant-free immunogen as a potential HIV vaccine [82] .
Search related documents:
Co phrase search for related documents- immune response and minimal interaction: 1, 2
- immune response and MPER membrane proximal external region: 1, 2, 3
- immune response and mucosal surface: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
- immune response and neutralize antibody: 1, 2, 3, 4, 5, 6, 7, 8, 9
- immune response and oligomeric form: 1
- immune response and outer membrane: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- immune response and outer membrane protein: 1, 2, 3, 4, 5, 6, 7, 8, 9
- immune response and protective immunity: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74
- immune response and protective immunity induce: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
- immune response and self assemble: 1, 2, 3
- immune response and self assemble np: 1
- immune response and structural change: 1, 2
- immune response and vault np: 1, 2
- immune response and wide range: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
- immunogenic protein and mucosal surface: 1
- immunogenic protein and outer membrane: 1, 2, 3, 4, 5
- immunogenic protein and outer membrane protein: 1, 2, 3
- immunogenic protein and protective immunity: 1, 2, 3, 4, 5, 6, 7, 8
- immunogenic protein and protective immunity induce: 1, 2, 3
Co phrase search for related documents, hyperlinks ordered by date