Author: Shapira, Assaf; Benhar, Itai
Title: Toxin-Based Therapeutic Approaches Document date: 2010_10_28
ID: 00cf294x_61
Snippet: Alexander Varshavsky suggested previously the construction of a new kind of toxins where a signal that inactivates the toxin, e.g. a degradation signal, can be cleaved off by a viral protease, resulting in selective intoxication of virally infected cells. He denoted such toxins "sitoxins" (signal-regulated, cleavage mediated toxins) [506] . For the construction of such viral-protease activated sitoxins, Falnes et al designed fusion proteins compo.....
Document: Alexander Varshavsky suggested previously the construction of a new kind of toxins where a signal that inactivates the toxin, e.g. a degradation signal, can be cleaved off by a viral protease, resulting in selective intoxication of virally infected cells. He denoted such toxins "sitoxins" (signal-regulated, cleavage mediated toxins) [506] . For the construction of such viral-protease activated sitoxins, Falnes et al designed fusion proteins composed of a FLAG peptide containing an N-terminal phenylalanine (a destabilizing amino acid according to the N-end rule), followed by an HIV-1 protease (HIV-1 PR) cleavage sites that is positioned upstream to a chimeric sequence between DT-A and the first PA-binding 255 amino acids of the anthrax LF, the LF N fragment, which was also shown to be destabilized by the addition of a degradation signal for N-end-rule-mediated degradation [513] . The rationale behind this construct was that following anthrax PA-mediated translocation into the cytoplasm of uninfected cells, the modified toxin would be rapidly degraded by virtue of its destabilizing N-degron, resulting in attenuated cytotoxic activity against these uninfected cells. In contrast, cleavage of the construct by the HIV-1 protease whose activity has been documented in the cytosol of acutely infected cells [514] [515] [516] [517] [518] would result in the removal of the destabilizing N degron from the chimeric toxin, exposing a new N terminal amino acid. As HIV-PR cleavage in each of its two recognition sequences that were chosen (TATIM*MQRG or VSQNY*VIVQ) generates a stabilizing N terminal residue (methionine or valine, respectively) according to the N-end rule, a longlife toxin with a potent cytotoxic activity is generated in HIV infected cells which leads to their destruction. Indeed, in vitro and in vivo simulating experiments showed that when the constructs were pre-digested with HIV-PR, both stability and cytotoxicity of the chimeric toxins was considerably augmented, proving that the concept of stabilizing a protein through specific proteolytic removal of a degradation signal works in practice. However, no selective eradication of HIV infected cells was observed following treatment with non pre-treated constructs, probably because of low cytosolic HIV-1 PR activity (no proteolytic processing of the constructs were detected in HIV-infected cells) [433] .
Search related documents:
Co phrase search for related documents- amino acid and cleavage mediate: 1, 2, 3, 4
- amino acid and cleavage site: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76
- amino acid and construct cleavage: 1, 2, 3, 4
- amino acid and cytotoxic activity: 1, 2, 3, 4, 5
- amino acid and cytotoxicity stability: 1
- amino acid and degradation signal: 1, 2
- amino acid and FLAG peptide: 1, 2
- amino acid and fusion protein: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75
- amino acid and HIV infect: 1
- amino acid and HIV PR cleavage: 1
- amino acid and infect cell: 1, 2, 3, 4, 5, 6, 7, 8, 9
- amino acid and potent cytotoxic activity: 1
- amino acid and pr activity: 1, 2
- amino acid and previously suggest: 1, 2, 3, 4, 5
- amino acid and protein stabilize: 1, 2
- amino acid and proteolytic processing: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29
- amino acid and proteolytic removal: 1
- amino acid and rapidly degrade: 1
- amino acid and recognition sequence: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18
Co phrase search for related documents, hyperlinks ordered by date