Author: Lemey, Philippe; Rambaut, Andrew; Bedford, Trevor; Faria, Nuno; Bielejec, Filip; Baele, Guy; Russell, Colin A.; Smith, Derek J.; Pybus, Oliver G.; Brockmann, Dirk; Suchard, Marc A.
Title: Unifying Viral Genetics and Human Transportation Data to Predict the Global Transmission Dynamics of Human Influenza H3N2 Document date: 2014_2_20
ID: 04q71md3_21
Snippet: Migration rates between populations in the SIR model are defined according to four scenarios, as follows: (A) equal rates, (B) rates proportional to the amount of air travel occurring between them (in terms of the number of passengers moving from one population to another), (C) rates proportional to Markov jump estimates based on a standard phylogeographic model (undertaken with and without BSSVS to reduce the number of rate parameters) and (D) a.....
Document: Migration rates between populations in the SIR model are defined according to four scenarios, as follows: (A) equal rates, (B) rates proportional to the amount of air travel occurring between them (in terms of the number of passengers moving from one population to another), (C) rates proportional to Markov jump estimates based on a standard phylogeographic model (undertaken with and without BSSVS to reduce the number of rate parameters) and (D) a GLM model that only considers air travel as a predictor. To compare the spread of influenza under these simulated models to recorded H1N1 pandemic spread, we measure the relative correspondence between the mean peak times (across 100 simulations) and the observed peak times for all locations except Mexico (based on World Health Organization data; Text S1). Correspondence was measured using the Spearman's rank correlation coefficient, and tested with associated p-values obtained using a permutation test (Text S1), as well as using the mean average error (MAE; in days). We consider the Spearman's rank correlation coefficients to be more appropriate for our comparison because they are more robust to outliers, which are clearly present in the observed peaks. Therefore, the scaling of between-population coupling c for the various migration matrices was also adjusted so as to maximize Spearman's rank correlation.
Search related documents:
Co phrase search for related documents- relative correspondence and SIR model population: 1
- relative correspondence and standard phylogeographic model: 1
- scenario accord and simulate model: 1
- simulate model and SIR model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47
- simulate model and SIR model population: 1, 2, 3, 4, 5, 6, 7, 8, 9
- simulate model influenza spread and SIR model: 1
- SIR model and Spearman rank correlation: 1, 2
- SIR model and standard phylogeographic model: 1
- SIR model population and standard phylogeographic model: 1
Co phrase search for related documents, hyperlinks ordered by date