Selected article for: "antiviral activity and IFITM antiviral activity mechanism"

Author: Suddala, Krishna C.; Lee, Christine C.; Meraner, Paul; Marin, Mariana; Markosyan, Ruben M.; Desai, Tanay M.; Cohen, Fredric S.; Brass, Abraham L.; Melikyan, Gregory B.
Title: Interferon-induced transmembrane protein 3 blocks fusion of sensitive but not resistant viruses by partitioning into virus-carrying endosomes
  • Document date: 2019_1_14
  • ID: 15wxk8lt_37
    Snippet: A remarkable breadth of enveloped viruses that are restricted by IFITM proteins suggests a universal mechanism for antiviral activity that likely involves altering the properties of the host cell membranes in a way that precludes viral fusion. It remains unknown how IFITMs exert their antiviral effects and, equally importantly, how arenaviruses and MLV escape restriction. In this study, we addressed a critical question of whether IFITMs work by a.....
    Document: A remarkable breadth of enveloped viruses that are restricted by IFITM proteins suggests a universal mechanism for antiviral activity that likely involves altering the properties of the host cell membranes in a way that precludes viral fusion. It remains unknown how IFITMs exert their antiviral effects and, equally importantly, how arenaviruses and MLV escape restriction. In this study, we addressed a critical question of whether IFITMs work by a proximity mechanism, which requires their presence at the sites of virus entry and whether the lack of local IFITMs is a major determinant of virus resistance.

    Search related documents:
    Co phrase search for related documents