Author: Shabman, Reed S.; Shrivastava, Susmita; Tsibane, Tshidi; Attie, Oliver; Jayaprakash, Anitha; Mire, Chad E.; Dilley, Kari E.; Puri, Vinita; Stockwell, Timothy B.; Geisbert, Thomas W.; Sachidanandam, Ravi; Basler, Christopher F.
Title: Isolation and Characterization of a Novel Gammaherpesvirus from a Microbat Cell Line Document date: 2016_2_17
ID: 1a9u53za_4
Snippet: Initiated with the goal of characterizing the response of a microbat cell line to virus infection, the present study employed deep sequencing of bat cell mRNAs and serendipitously identified the presence of transcripts corresponding to a novel gammaherpesvirus. Follow-up studies demonstrated that the bat cell virus is released in a replication-competent form and can productively replicate in several nonhuman primate and human cell lines. Phylogen.....
Document: Initiated with the goal of characterizing the response of a microbat cell line to virus infection, the present study employed deep sequencing of bat cell mRNAs and serendipitously identified the presence of transcripts corresponding to a novel gammaherpesvirus. Follow-up studies demonstrated that the bat cell virus is released in a replication-competent form and can productively replicate in several nonhuman primate and human cell lines. Phylogenetic studies on this virus sequence suggest a bat origin for the new gammaherpesvirus. Although previous reports have described other gammaherpesvirus sequences from bats (16) (17) (18) , as well as a replication-competent bat betaherpesvirus (19) , the present study describes the first isolation of what is likely a bat gammaherpesvirus. The transcriptome data from the bat cell line also provide a transcript map for the novel gammaherpesvirus. Of note, novel open reading frames (ORFs) that likely function to regulate the bat immune responses appear to be expressed. Taken together, the gammaherpesvirus and microbat cell line provide a platform that will enable a greater understanding of both bat cell biology and innate immune regulatory mechanisms.
Search related documents:
Co phrase search for related documents- open reading frame and ORFs open reading frame: 1, 2, 3, 4, 5
- present study and previous report: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
- present study and reading frame: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29
- present study and regulatory mechanism: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
- present study and virus infection: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74
- present study and virus sequence: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28
- previous report and virus infection: 1, 2, 3, 4, 5, 6, 7, 8
- previous report and virus sequence: 1, 2
- reading frame and regulatory mechanism: 1, 2
- reading frame and virus infection: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39
- reading frame and virus infection cell line: 1
- reading frame and virus sequence: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48
- regulatory mechanism and virus infection: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
- regulatory mechanism and virus sequence: 1, 2
- transcript map and virus infection: 1
- transcript map and virus sequence: 1, 2, 3
Co phrase search for related documents, hyperlinks ordered by date